

Adaptive Information Integration: Bridging the
Semantic Gap between Numerical Simulations

Tobias Meisen1, Philipp Meisen2, Daniel Schilberg1, Sabina Jeschke1

1Institute of Information Management in Mechanical Engineering,

RWTH Aachen University, Dennewartstraße 27, 52068 Aachen, Germany
{tobias.meisen, daniel.schilberg, sabina.jeschke}@ima-zlw-ifu.rwth-aachen.de

2Inform GmbH, Pascalstraße 23, 52076 Aachen, Germany

philipp.meisen@inform-ac.com

Abstract. The increasing complexity and costs of modern production processes
make it necessary to plan processes virtually before they are tested and realized
in real environments. Therefore, several tools facilitating the simulation of dif-
ferent production techniques and design domains have been developed. On the
one hand there are specialized tools simulating specific production techniques
with exactness close to the real object of the simulation. On the other hand there
are simulations which simulate whole production processes, but in general do
not achieve prediction accuracy comparable to such specialized tools. Hence,
the interconnection of tools is the only way, because otherwise the achievable
prediction accuracy would be insufficient. In this chapter, a framework is pre-
sented that helps to interconnect heterogeneous simulation tools, considering
their incompatible file formats, different semantics of data and missing data
consistency.

Keywords: Application integration, Data integration, Simulation tools, Ontolo-
gy, Framework

The final version of this manuscript has been published by Springer, Berlin, Heidelberg
as: Meisen, T., Meisen, P., Schilberg, D., Jeschke, S. (2012). Adaptive Information Integration:
Bridging the Semantic Gap between Numerical Simulations. In: Zhang, R., Zhang, J., Zhang,
Z., Filipe, J., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2011. Lecture Notes in
Business Information Processing, vol 102. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-29958-2_4

1 Introduction

Within the enterprising environment, the necessity to couple deviating applications
being used in a company was recognized early. As a consequence, various concepts
were developed that were subsumed under the collective term “Data Integration
Techniques” [28]. One of those techniques, “Enterprise Application Integration”
(EAI), focuses on integrating business processes based on IT along the value chain of
an enterprise without taking into account the platform, the architecture as well as the

generation of the applications being used in these processes [4]. Especially in the
widely spread field of enterprise resource planning [8] EAI technologies are well
established. These technologies are the foundation for such systems concerning data
and application integration. In other fields, e.g. Business Intelligence (BI) or Enter-
prise Performance Management (EPM), other data integration techniques (i.e. ETL,
EII) are mainly used to gain information about cross-applicational business processes
[19].

The combination of those integration techniques to analyze more complex busi-
ness processes, like simulation processes, is seldom taken into account [23]. Simula-
tion itself is a well-established field in research and development and different simu-
lations for specific tasks as e.g. casting, welding or cooling and also for whole pro-
cesses (e.g. transformation or heat-treatment processes) are available. Nevertheless,
those simulations have to be seen as isolated applications. They are often specialized
for a single purpose (e.g. a specific task) and have neither standardized interfaces nor
standardized data formats. Therefore, different results that were received within a
simulation can only be integrated into a simulation process if they are checked manu-
ally and are adapted to the needs of the subsequent simulations. Current data integra-
tion techniques cannot easily be applied to the simulation context because a combina-
tion of different techniques and solutions is required. Huge data volumes which are
characteristic for simulation processes tend to use ETL techniques, whereby those do
not support the important concept of message-oriented transactions. These message-
oriented transactions are realized in the field of EAI (e.g. ESB). Although within the
field of EAI, huge data volumes cannot be handled satisfactorily. Another problem is
the adaption of the data integration process concerning changes within the simulation
process (e.g. the integration of a new application, the modification of a simulated
object) and the semantics of data that have to be considered by the integration.

In this chapter, a framework will be described which provides the possibility of
simulating a production process by making use of existing isolated applications. The
integration is based on ontologies, which describe the domain specific knowledge
(e.g. material processing simulations) and planning algorithms used to identify how
the data can be transferred between different heterogeneous simulation tools. There-
by, the chapter focuses on the integration of data that was generated during applica-
tions’ usage, whereas the applications’ linkup technique, which can be handled with
the help of modern middleware [18], will not be stressed.

The framework has been validated on the foundation of the simulation of three
production processes, namely a line-pipe, a gear wheel and a top-box. The framework
was developed within the project “Integrated Platform for Distributed Numerical
Simulation”, which is part of the Cluster of Excellence “Integrative Production Tech-
nology for High-Wage Countries”.

The chapter is structured as follows: In section 2, the current state of technology
will be outlined in order to provide a foundation for section 3, in which one of the
simulated production processes is exemplarily presented. Section 4 consists of a de-
scription of the architecture of the framework that is completed in section 5 by a spec-
ification of the used information integration method. Section 6 points out how the
framework needs to be extended with regard to the presented use case. In section 7, a
conclusion and outlook will be drawn from the insights generated in this chapter.

2 State of the Art

Since the nineties, data integration belongs to the most frequented topics with refer-
ence to finding answers to questions which are raised across application boundaries
[9]. Today, a multitude of data integration products can be found which are used in
different fields of application, whereby each technology can be assigned to one of
three techniques [28] (cf. Fig. 1): data propagation, data federation or data consolida-
tion.

Fig. 1. Main areas of data integration [28]

With regard to the operational section, data propagation is applied in order to
make use of data on a cross-application basis, which is often realized via EAI. As
already presented in [28], EAI mainly focuses on small data volumes like messages
and business transactions that are exchanged between different applications. In order
to realize EAI, a contemporary architecture concept exists, which was developed in
connection with service-based approaches [3] and which will be emphasized within
this contribution – the so-called Enterprise Service Bus (ESB). The basic idea of ESB,
which can be compared to the usage of integration brokers, comprises the provision of
services within a system [25]. Within an ESB different services provide a technical or
technological functionality with the help of which business processes are supported.
A service can be a transformation or a routing service, whereby all services are con-
nected with each other via an integration bus. Transformation services provide gen-
eral functions in order to transfer data from one format and/or model into another. In
contrast, routing services are used to submit data to other services. Both transfor-
mation and routing services are used by adapters in order to transfer data provided by
the integration bus into the format and the model of an application. Consequently,
transformation services support the reuse of implemented data transformations. The
advantage of solutions based on ESB is to be seen in the loose coupling of several
services, whereas the missing physical data coupling can be regarded as a disad-
vantage [20]: If recorded data has to be evaluated subsequently, it has to be read out
and to be transformed once again. According to this fact, a historic or at least long-

term oriented evaluation of data is unconvertible, even though such an evaluation is
often required.

In order to realize such a unified examination on a cross-data basis, other tech-
niques belonging to the field of data integration need to be taken into consideration
(cf. Fig. 1). Data federation, which is studied within the field of Enterprise Infor-
mation Integration (EII), might serve as one possible solution to enable a unified
examination. With the help of EII, data from different data sources can be unified in
one single view [1]. This single view is used to query for data based on a virtual,
unified data schema. The query itself is processed by mediators and divided in several
queries fired against the underlying data sources. Because of the fact that most EII do
not support advanced data consolidation techniques, the implementation will only be
successful if the data of the different data sources can be unified, the data quality is
sufficient and if access to the data is granted (e.g. via standard query interfaces).

If a virtual view is not applicable, techniques belonging to the field of data consol-
idation need to be utilized. Data consolidation comprises the integration of differing
data into a common, unified data structure. Extract Transform Load (ETL) can be
seen as one example for data consolidation, which is often used in the field of data
warehousing [27]. ETL starts with the extraction of data from one or several – mostly
operational – data sources. The extracted data is than transformed (e.g. joined, modi-
fied, aggregated) and the data model is adapted to a final schema (often a so called
star schema). During the last phase the data is loaded into a target database (in general
a data warehouse).

The presented techniques of data integration have in common that - independent
of the technique - the heterogeneity of data has to be overcome. In literature, different
kinds of heterogeneity are distinguished [7, 14, 16]. In this chapter, the well-
established kinds of heterogeneity, technical, syntactic, data model, structural and
semantic heterogeneity, listed in [16] are considered.

3 Use Case

Within this chapter, the manufacture of a line-pipe will be stressed as example use
case. During the manufacture several simulation tools that are specialized for these
techniques are used. The goal is the simulation of the whole production process,
whereby the results of each specialized tool will be considered across the whole simu-
lation process. The production process which will be used to exemplify the example
use case is illustrated in Fig. 2.

Fig. 2. Production process of a line-pipe (top) and the used simulation tools (middle & bottom)

The use case starts with a simulation of the annealing, the hot rolling as well as the
controlled cooling of the components via the simulation tool CASTS (Access). The
next step consists in representing the cutting and the casting with the help of Abaqus
(Dassault Systems), whereas the welding and the expanding of the line-pipe will be
simulated via SimWeld (ISF - RWTH Aachen University), and via SysWeld (ESI-
Group). Furthermore, the simulation of modifications in the microstructure of the
assembly will be realized by making use of Micress and Homat (Access). All in all,
the use case contains six different kinds of tools, each based on different formats and
simulation models. Thereby, the required integration solution has to take different
requirements into account [22]. Two requirements, which turned out to be central
with reference to the framework presented in this chapter, are on the one hand, the
possibility of data propagation, focusing the semantic data exchange between the
applications, and, on the other hand, the necessity of a process-oriented data consoli-
dation. Both are used to facilitate a subsequent visualization and analysis of data col-
lected within the process.

4 Architecture of the Framework

4.1 System Architecture

The framework’s architecture is based on the requirements described in section 3. The
architecture is depicted in Fig. 3. As illustrated, the framework follows the architec-
ture concept of ESB, whereby the possibility of data consolidation was realized by
implementing a central data storage (CDS) [21].

Fig. 3. System-architecture of the framework

In order to realize a communication (e.g. concerning the exchange of files and
overcome the technical heterogeneity) between the integration bus and the different
simulation tools, a middleware is used that encapsulates the functionality of routing
services which are typical of those used in ESB concepts1. Hence, routing services are
not considered in this framework, as the integration of a standard middleware is
straight forward. The framework is employed with the intention of realizing an inte-
gration level, at which service providers, which are directly linked to the integration
bus, offer different services. With the help of these services, data can be integrated,
extracted and transformed. As the connection is realized via a platform independent
messaging protocol, it is not bound to the operating system in use. The employment
of a process manager as well as of a CDS marks an important difference between the
architecture described in this section and the architectural pattern of an ESB. The
process manager receives all data transferred by the middleware, analyses it and,
subsequently, makes it available for each of the service providers via the integration
bus. In turn, the service providers tap the required data in order to process it. After a
step of processing is finished, the consistency of the data is checked and the next
processing step is determined by the process manager.
Consequently, with regards to the processes of data integration and data extraction,
the process manager has the task of a central supervisory authority. The service pro-
viders as well as the process manager have access to the central data storage, whereby
data consolidation and, as a result, analyses of data collected during the process be-
come possible.

1 Within the use case mentioned in section 3 the application-oriented middleware Condor [2] is

used.

4.2 Software Architecture

The framework comprises three main components: the middleware communication,
the process manager and the service provider. In order to guarantee a connection
between those components, a codebase component is needed, in which a cross-
component functionality is encapsulated. In the following, these components will be
described in detail.

Middleware Communication. The Middleware Communication component supports
the realization of communication processes between the middleware and the integra-
tion bus. It contains adapters, which facilitate the transmission of demands to the
integration bus by making use of different communication protocols, such as JMS,
RMI or SOAP [13]. As far as a concrete use case is concerned, which is not covered
by technologies that were already integrated, the component is modular expandable,
which enables the implementation of additional separate adapters (cf. section 5).

Process Manager. The Process Manager comprises the implementation of a man-
agement component, which functions as a service provider and a central control unit
for integration, extraction and conversion processes. The services provided by this
component involve the integration, the extraction and the transformation of data. For
each of these services, a service process is stored, which is started and processed as
soon as a query is sent to the process manager. A service process describes which
services need to be handled with the purpose of providing the requested functionality.
The service processes realized within the framework are illustrated in Fig. 4.

Fig. 4. Service Processes of the framework.

The conversion process is defined by an integration process and an extraction pro-
cess which are both based upon extended ETL process. Within the integration pro-
cess, a post-processing of integrated data is succeeded, whereas the extraction process
makes use of a data enrichment that is carried out prior to the actual ETL process.
Thereby, the process manager is used as a mediator with the help of which data is
exchanged to those service providers that feature the postulated functionality and
capacity. As a consequence, the algorithms, which are important for the process of
information integration and which are depending on the use case in question, are

encapsulated within the specified service providers. Additionally, the process manag-
er realizes a process-related integration of data. Thereby, the process manager con-
trols the assignment of data to the process step and transmits the context of the pro-
cess in question to the service providers.

Service Provider. The functionality provided by a service provider always depends
on the provided services and therefore on the concrete use case. For instance, the
integration of FE data on the one hand and the integration of data of molecular struc-
tures on the other hand are based upon different data schemas, even though these
processes of integration consist in the same physical object and deal with comparable
physical entities.

The framework offers interfaces to common ETL tools as, for example, the Pen-
taho Data Integrator (PDI) [15]. Thus, the integration and extraction of data, and
therefore the overcoming of the syntactical and data model heterogeneity, can be
created on the basis of these tools. Furthermore, additional tools can be implemented
in order to realize the processes of integration and extraction in the case that this way
of proceeding is convenient and necessary within a concrete use case.

Apart from services which provide an ETL process, the framework supports addi-
tional services in order to post-process and enrich data. For instance, the post-proces-
sing service allows the implementation of plausibility criteria, which need to be ful-
filled by the integrated data without reference to their original source. During the
process of enrichment, data transformations are carried out with the purpose of editing
data stored within the central data store in such a way that the data is able to meet the
requirements demanded with regard to the extraction process. Therefore an adaptive
information integration process [17] is used, which is described in the next section.

5 Adaptive Information Integration

5.1 Concept

The main goal of the adaptive information integration is to overcome the problems of
structural and semantic heterogeneity considering domain specific knowledge. The
adaptive information integration is part of the enrichment process step in the extended
ETL process being used during the extraction of data. The goal of the process is to
extract data in a defined data format, regarding the data model and structure, as well
as the semantics, of this format and the domain. Therefore, the implemented enrich-
ment enables the discovery and exploitation of domain specific knowledge. The con-
cept is based upon ontologies and planning algorithms used in the field of artificial
intelligence.

First, the existing data is analyzed. The goal of the analysis is the determination of
so called features that are fulfilled by the data. A feature is domain specific and ex-
presses structural or semantic properties that are satisfied by the data. Besides, the
analysis step determines features that have to be fulfilled by the data to satisfy the
requirements of the specific output format. Following the analysis the planning algo-
rithms are used to find a data translation that transforms and enriches the data, so that

the enriched data fulfills the features needed by the output format. After the planning
is finished, the found data translation is processed. The data transformation algorithms
used for the data transformation are realized as a service. The information about the
existing transformations and features is expressed in an ontology. The basic structure
of this ontology is described in the following section.

5.2 Ontology

The information used by the enrichment process is subdivided among a framework
ontology and a domain ontology. The domain ontology holds information about the
concrete transformations, features and applications used in the context of a specific
domain. Besides, information about the domain specific data schema is stored. An
extract of the domain ontology used to implement the use case is described in section
6, using the Web Ontology Language (OWL).

The domain ontology specialize the concepts of the framework ontology in order
to specify the conceptualization of the domain. Hence, the framework ontology is a
specification of the concepts used in the framework to enable the enrichment process.
These main concepts are data, feature, application and transformation, which are
introduced shortly.

The concept data is the generalization of all data concepts used in the domain.
More precisely each concept in the domain ontology used to describe the data schema
of the domain has to be a specialization of the concept data. The mapping between
data concepts and the data schema of the domain is realized by using a predefined set
of annotations. Because of the single mapping between a well-known ontology and a
well-known database schema, automatic schema matching algorithms are not used.
Instead this approach follows the concept of annotation-based programming. Fig. 5
gives an overview of the main annotations.

Fig. 5. Ontology annotations.

Defining domain specific features is done by creating a specialization of the con-
cept feature. Such a specialization is a listing of the requirements that have to be satis-
fied by a set of data, so that the represented feature is fulfilled.

For each definition of applications and their requirements, instances of the concept
application have to be expressed in the domain ontology. An instance of the concept
application can have additional object properties to express domain specific infor-
mation of an application. Similar to an application, a transformation has requirements
that have to be satisfied. Otherwise, the transformation cannot be used. Therefore,
each instance of the concept transformation has to outline the requirements by defin-
ing instances of feature concepts. In addition, a transformation changes the features of
data. This is realized by expressing the effects of the transformation in the ontology.
The concept transformation and its main relations are depicted in Fig. 6.

Fig. 6. Fragment of framework ontology - transformation concept

 The input is set by an instance of the concept data, whereby the requirements are
expressed by instances of either hasPositivePrecondition or hasNegativePrecondition.
These object properties realize relations between the concrete transformation and fea-
ture instances. The framework ontology provides a set of logical connectives and
quantifiers to express complex requirements like feature1 or feature2. Similarly, the
effects of the transformation are expressed.

5.3 Components

The concept of the adaptive information integration is realized by three services: the
data analyzer, the plan generator and the plan processor. Each service implements one
of the previously described steps of the enrichment process.

The data analyzer loads the ontology and establishes a connection to the CDS. By
using the domain ontology, the features are determined by querying all defined spe-
cializations of the concept feature. The implementation of this service makes use of
the OWL API [12] and the reasoner Pellet [26]. The fulfillment of a feature is
checked by querying once again the CDS. The queries are generated by using the an-
notation based mapping. The result of the query is analyzed according to the feature
definition.

The fulfilled features define the initial state of the data. In addition, the goal state
is determined by the data analyzer by reasoning. This means that the current context

(required output format and domain specific parameters) is used to query the required
features by using the information stored in the domain ontology.

Hence, the result of the data analyzer consists of the initial and the goal state. This
information is passed to the plan generator to determine the needed data translation.
Therefore, the plan generator queries the existing data transformations from the do-
main ontology and generates a problem description using the Planning Domain Defi-
nition Language (PDDL) [5]. The defined planning problem is than solved by a plan-
ner component, which generates a solution plan. More detailed, the planner is used to
determine a sequence of, so called actions that lead from the initial state to a goal
state. The framework supports different planning algorithms like forward, backward
and heuristic search, STRIPS algorithm or Planning Graphs [6, 10]. If the planner
succeeds a plan is generated that contains the transformations and their parameteriza-
tion as well as their ordering to transform the data, so that the required features are
fulfilled by the data after having processed the plan. Finally, the processing of the
plan is realized by the plan processor.

6 Application of the Framework

Within the domain of the use case described in section 3 and the requirements result-
ing from the examination of four additional use cases in the domain of FE-simula-
tions, an integration platform has been implemented in parallel to the implementation
of the framework. The integrated applications are simulations based upon the finite-
element-method. In order to implement the integration platform a domain specific
data schema, adapters for integration and extraction, the transformation library and
the domain ontology have been provided. In the following, some selected examples
will be presented.

Data schema. The domain specific data schema has been determined by analyzing
the different input and output formats of the simulations used in the use case. Within
this data schema, a grid structure, representing the abstraction of the assembly that is
simulated, is the central entity. It consists of nodes, cells and attributes. The latter
ones exhibit attribute values, which are assigned to individual cells or nodes depend-
ing on the class of attributes available in the whole mesh. The integration services,
which were specified within the use case, read in the mesh data provided by the simu-
lation, transform it into the central data model and store it into the CDS. In contrast,
the extraction services proceed as follows: The mesh data is read out from the CDS
and transformed into the required format. Finally, the data is saved into the destina-
tion file or into the target database. Because of the prior enrichment, all of the struc-
tural and semantic data transformations have been performed. Hence, most of the data
transformations formerly performed by the adapter services are omitted.

Adapter service. Most of the adapter services have been implemented using the Pen-
taho Data Integrator (PDI). If more complex data have been given, or binary formats
that can only be read by programming interfaces of the manufacturer, either the PDI
functionality have been extended using the provided plug-in architecture or the need-

ed functionality has been implemented using Java or C++. For example, the simula-
tion results generated within the simulation tool CASTS are stored in the Visualiza-
tion Toolkits (VTK) format [24]. Hence, an integration service was implemented,
which is based on the programming interface provided by the developers of VTK
using the provided functionality of the framework. Furthermore, an extraction service
was developed with regard to the Abaqus input format, whereby, in this case, the
aforementioned ETL tool PDI was used.

Transformation library. In order to realize the information integration, different
sorts of data transformations for FE data were implemented into the application, for
example the conversion of attribute units, the deduction of attributes from those ones
that are already available, the relocating of the mesh within space, the modification of
cell types (e.g. from a hexahedron to a tetrahedron) or the re-indexing of nodes and
cells.

Domain Ontology. The domain specific information has been expressed in the do-
main ontology. As described previously in section 5, the domain ontology uses the
concept of the framework ontology to express the data schema, the transformations,
the applications and the features of the domain. Fig. 7 sketches a fragment of the
concept Mesh.

Fig. 7. Fragment of the concept Mesh and related concepts

Because of the number of data and object properties, only a few are depicted.
Most interesting is the data property hasMinNodeId, which is a sub-property of the
hasMinimumValueProperty. This kind of data property can be used to prompt the data
analyzer to use the SQL MIN function, whenever a classification requires such infor-
mation. Analogous data properties for average and maximum exist within the frame-
work ontology. The depicted object properties hasNode, hasCell and hasAttribute
represent the relation between the concept Mesh and the concept referred to by the
object property. Using the previously described annotations the metadata of the rela-
tionship like primary and foreign keys are expressed.

The defined data schema is used to point out different data features of the domain.
As described, a feature is a kind of classification of existing data. More precisely, if
all conditions of a feature are fulfilled, the data belongs to the concept represented by
the feature. One feature is the already mentioned PlainMeshFeature. It expresses that
a mesh belongs to the class of plain meshes if all nodes of the mesh have a z-coordi-
nate of zero. The feature is illustrated in Fig. 8 as well as expressed by the OWL Man-
chester Syntax [11].

Fig. 8. Expression of the PlainMeshFeature

Besides the data schema and the features the ontology also contains information
about the available transformations and the used applications. One example of a trans-
formation is HexaToTetra that transforms a mesh that is based on hexahedrons into a
mesh of tetrahedrons. The transformation searches all occurrences of hexahedrons
within the mesh and splits them into tetrahedrons without creating new nodes. Hence,
the precondition of the transformation is that at least one hexahedron exists in the
mesh. The effect is that all hexahedrons are replaced by tetrahedrons. Preconditions
and effects are expressed by using features. The expression of the transformation
HexaToTetra in the domain ontology is illustrated in Fig. 9.

Fig. 9. Expression of the transformation HexaToTetra

As described previously a concrete transformation is expressed by an instance of
the concept transformation, whereby the input, preconditions and effects are ex-
pressed by instances of the corresponding concepts. The instance HTTMesh of the
concept Mesh describes that the input of the transformation is some mesh. The pre-
condition is an instance of the concept CellTypeFeature expressing that the transfor-
mation is only valid if the HTTMesh has cells of the cell type hexahedron, which is a
concrete instance of the concept CellType. Also, the effects are expressed using
CellTypeFeature. The positive effect is that the resulting mesh contains cells of the
type tetrahedron, whereas the negative effect is, that the concrete CellTypeFeature
representing the hexahedron is forfeited.

Example. Concluding this section, a small example of the data provision of results
generated by the simulation CASTS to the simulation Abaqus is presented. The ex-
ample focuses on the structural changes of the data that are needed, in order to enable
the usage of the data in Abaqus. Using the VTK data format, the indexing of nodes
and cells begins with zero. Instead, Abaqus requires a sorted indexing starting with
one. Additionally, in CASTS, vectors are decomposed into single components and
stored as attribute values assigned to nodes, whereas in Abaqus, vectors need to be
quoted entirely. Due to the data enrichment, the needed data transformations have
been determined autonomously (cf. Fig. 10).

Fig. 10. Simplified illustration of the resulting data translation from CASTS to Abaqus

7 Conclusion

The development of the framework presented in this chapter can be regarded as an
important step in the establishment of integrated simulation processes using heteroge-
neous simulations. Both, data losses as well as manual, time-consuming data trans-
formations from one data format to another are excluded from this approach. The
suggested framework facilitates the interconnection of simulation tools, which were -
until now - developed independently and which are specialized for certain production
processes or methods. Furthermore, the integration of data generated in the course of
the simulation is realized in a unified and process-oriented way. Apart from the inte-
gration of further simulation tools into an application, which was already established,
it is essential to extend the domain of simulations reflected upon with additional simu-
lations covering the fields of machines and production. In this way, a holistic simula-
tion of production processes is provided. Thereby, a major challenge consists in gen-
erating a central data model, which provides the possibility of illustrating data uni-
formly and in consideration of its significance in the overall context, which comprises
the levels of process, machines as well as materials. Due to the methodology present-
ed in this chapter, it is not necessary to adapt applications to the data model aforemen-
tioned. On the contrary, this step is realized via the integration application, which is to
be developed on the basis of the framework. Because of the unified data view and the
particular logging of data at the process level, the framework facilitates a comparison
between the results of different simulation processes and those of simulation tools.
Furthermore, conclusions can be drawn much easier from potential sources of error -
a procedure which used to be characterized by an immense expenditure of time and
costs. The realization of this procedure requires the identification of Performance
Indicators, which are provided subsequently within the application. In this context,
the development of essential data exploration techniques on the one hand and of visu-
alization techniques on the other hand turns out to be a further challenge. Concepts

and methods focusing this challenge will be developed and summarized under the
term Virtual Production Intelligence. This term is motivated by the notion of Business
Intelligence, which refers to computer-based techniques used to handle business data
in the aforementioned manner.

Acknowledgments. The approaches presented in this chapter are supported by the
German Research Association (DFG) within the Cluster of Excellence “Integrative
Production Technology for High-Wage Countries”.

References

1. Bernstein, P., A., Haas, L. M.: Information integration in the enterprise. In: Communica-
tions of the ACM - Enterprise information integration and other tools for merging data, vol.
51, no. 9, pp. 72--79. (2008)

2. Cerfontaine, P., Beer, T., Kuhlen, T., Bischof, C.: Towards a Flexible and Distributed
Simulation Platform. In: Proceedings of the International Conference on Computational
Science and its Applications (ICCSA), Part I, pp. 867--882. Springer, Heidelberg (2008)

3. Chappell, D.: Enterprise Service Bus. Theory in Practice. O'Reilly, Beijing, Cambridge
(2004)

4. Conrad, S.: Enterprise Application Integration: Grundlagen, Konzepte, Entwurfsmuster,
Praxisbeispiele. Elsevier, Spektrum, Akad. Verl., Heidelberg (2005)

5. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. In: Journal of Artificial Intelligence Research, vol. 20 (1), pp. 61--124 (2003)

6. Ghallab, M., Nau, D. S., Traverso, P.: Automated planning. Theory and practice. Else-
vier/Morgan Kaufmann, Amsterdam (2004)

7. Goh, C., H.: Representing and reasoning about semantic conflicts in heterogeneous infor-
mation systems. PhD thesis, Massachusetts Institute of Technology (1997)

8. Gronau, N.: Enterprise Resource Planning: Architektur, Funktionen und Management von
ERP-Systemen, Oldenbourg, München (2010)

9. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: Proceedings
of the 32nd international conference on Very large data bases (VLDB), pp. 9--16, VLDB
Endowment (2006)

10. Hoffmann, J., Nebel, B.: The planning system: Fast plan generation through heuristic
search. In: Journal of Artificial Intelligence Research, vol. 14 (1), pp. 253--302 (2001)

11. Horridge, M., Patel-Schneider, P. F.: OWL 2 Web Ontology Language Manchester Syntax,
W3C Working Group Note 27 October 2009, W3C, online available
http://www.w3.org/TR/owl2-manchester-syntax/ (2009)

12. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL 2 Ontol-
ogies. In: Proceedings of the 5th International Workshop on OWL: Experiences and Direc-
tions (OWLED), vol. 529 of CEUR Workshop Proceedings (2009)

13. Kashyap, V., Bussler, C., Moran, M.: The Semantic Web, Semantics for Data and Services
on the Web. Springer, Heidelberg/Berlin (2008)

14. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase systems.
In: Computer, vol. 24 (12), pp. 12--18 (1991)

15. Lavigne, C.: Advanced ETL with Pentaho Data Integration. Whitepaper, Breadboard BI
(2006)

16. Leser, U.: Informationsintegration: Architekturen und Methoden zur Integration verteilter
und heterogener Datenquellen. Dpunkt-Verl., Heidelberg (2007)

17. Meisen, T., Schilberg, D., Henning, K.: Planner Based Data Integration for Simulation
Chains in Virtual Production. In: Proceedings of the International Conference on Science,
Technology and Innovation for Sustainable Well-Being (STISWB), pp. 100--108, Klung
NaNa Vithya Press Limited Partnership (2009)

18. Myerson, J. M.: The Complete Book of Middleware. Auerbach Publications, Boston, MA,
USA (2002)

19. Panian, Z.: Supply chain intelligence in ebusiness environment. In: Proceedings of the 9th
WSEAS International Conference on Computers (ICCOMP), pp. 1--6, World Scientic and
Engineering Academy and Society (2005)

20. Rademakers, T., Dirksen, J.: Open-Source ESBs in Action. Manning Publications Co.,
Greenwich, CT, USA (2008)

21. Schilberg, D., Gramatke, A., Henning, K.: Semantic Interconnection of Distributed Numer-
ical Simulations via SOA. In: Proceedings of the World Congress on Engineering and
Computer Science (WCECS), pp. 894--897 (2008)

22. Schilberg, D.: Architektur eines Datenintegrators zur durchgängigen Kopplung von verteil-
ten numerischen Simulationen. PhD thesis, RWTH Aachen University (2010)

23. Schmitz, G., Prahl, U.: Toward a virtual platform for materials processing. In: JOM Journal
of the Minerals, Metals and Materials Society, vol. 61, pp. 19--23 (2009)

24. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, Kitware Inc. (2004)
25. Schulte, R., W.: Predicts 2003: Enterprise service buses emerge. Technical report, Gartner

(2003)
26. Sirin, E.: Pellet: A practical owl-dl reasoner. In: Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 5 (2), pp. 51--53 (2007)
27. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL processes. In:

Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP
(DOLAP), pp. 14--21. ACM, New York, NY, USA (2002)

28. White, C.: Data Integration: Using ETL, EAI and EII Tools to Create an Integrated Enter-
prise. Technical report, The Data Warehousing Institute (2005)

