
How To RAMI 4.0: Towards An Agent-based
Information Management Architecture

Andreas Kirmse, Vadim Kraus,
Tristan Langer, Andre´ Pomp

Institute of Information Management
in Mechanical Engineering
RWTH Aachen University

Dennewartstr. 27, 52068 Aachen
{andreas.kirmse, vadim.kraus,

tristan.langer, andre.pomp}@ima.rwth-aachen.de

Prof. Dr.-Ing. Tobias Meisen
Chair of Technologies and Management

of Digital Transformation
University of Wuppertal

Rainer-Gruenter-Str. 21, 42119 Wuppertal
meisen@uni-wuppertal.de

Abstract—With the latest advances in digitalization and Indus-
try 4.0, the manufacturing industry is collecting more and more
production data. However, with the increasing interconnection
of machines, not only the volume but also the variety of data
is being expanded. The data life cycles of collection, processing,
combining, analyzing and feeding new findings back into sources
are becoming increasingly challenging for data scientists to
complete. Reference architectures such as the RAMI 4.0 provide
conceptual guidelines to address these problems. In this paper,
we focus on the implementation of an agent-based architecture
that is in line with RAMI 4.0. This architecture implements the
guidelines provided by RAMI 4.0 by applying modern approaches
from the areas of data lake based data acquisition, semantic
description, look up and processing as well as information
utilization.

Index Terms—Data acquisition, Data integration, Information
management, Multi-agent systems, Big Data applications, Indus-
try applications, RAMI 4.0

I. INTRODUCTION

With the emerging of Industry 4.0, more and more man-
ufacturing systems are being upgraded to enable intelligent
manufacturing. Sensors are installed to map the state of
physical systems into the digital world and machines are
interconnected to derive optimization potential for production
from the data flow [31]. Initial attempts of bridging the
gap between the physical and digital domain, include the
implantation of custom solutions for collecting, storing and
analyzing data. For instance, companies started to centralize
data collection from manufacturing systems by creating data
warehouses to have a single structured data source for business
analysis. Data warehouses use a schema-on-write approach
that requires every data source to be processed and organized
into one or multiple predefined data schemes. Therefore, using
data warehouses as a versatile general purpose storage system
requires complex processing and structural adaptation before
new data sources are available. However, in industrial produc-
tion, which is driven by the fear of losing hidden insights
from shop floor data, all data sources are currently being
identified as potentially useful and, therefore, are preemptively
recorded [8]. Due to the increasing number of machines, the

amount and also variety of data increases immensely. Conse-
quently, using data warehouses became increasingly costly and
the use of data lakes has emerged as an suitable storage and
staging layer. Data lakes, in contrast to warehouses, store all
data without modification, which provides cheaper storage and
integration of new data sources. However, analyzing the data in
a data lake to derive hidden insights is more complicated than
with data warehouses, because a data analyst must first find
and understand the stored data. Hence, companies started again
to implement and introduce tools that facilitate data analytics
for Industry 4.0 data lake architectures.

These trends show that the manufacturing industry is trying
to achieve the goals of Industry 4.0 by implementing solutions
for the different aspects of collecting, storing, integrating,
discovering and analyzing data, leaving uncertainty about the
individual implementation as well as their interoperation. To
overcome this issue, different Industry 4.0 reference architec-
tures were proposed, providing guidelines on how to imple-
ment overall solutions for bridging the physical and digital
domain. For instance, these architectures need to support the
collection of appropriate data sets and provide feedback on
data sets to the associated data provider in order to adapt to
the requirements of the analysis use case [14]. One of these
architectures is the Reference Architectural Model Industry 4.0
(RAMI 4.0) [30]. However, since RAMI 4.0 is only an abstract
framework, there is a need for more concrete architectures that
show how to implement data lakes for the data analytics use
case within Industry 4.0 applications.

In this paper, we introduce an approach for the imple-
mentation of a RAMI 4.0 conform architecture dealing with
connecting industrial data sources to a data lake storage system
and using the data for analytic use cases. We consider semantic
enrichment by adding semantic models during the integration
phase from ingestion agents and user input. The usage of
data considers semantic extraction by corresponding agents,
providing semantic and structural transformation tasks. The
combined use of the agents is utilized in an extended data
analytic cycle providing applications with a close integration
to business processes.

Final version of manuscript ©2019 IEEE

mailto:meisen@uni-wuppertal.de

II. RAMI 4.0 AND IMPLEMENTATION CHALLENGES

In this section, we explain the RAMI 4.0 reference architec-
ture based on its layered structure and derive implementation
challenges for each layer.

RAMI 4.0 refers to the service oriented Reference Archi-
tectural Model Industry 4.0, which defines hierarchy levels for
organizing the digitalization of industrial components [30]. In
its three-dimensional representation it is based on the OSI
software layer model [7], the automation pyramid [11] as
hierarchy levels and the value stream of a product.

Figure 1 shows the layered visualization of the OSI-based
software model together with a depiction of the components
in the automation pyramid scheme. The bottom asset layer de-
scribes physical components like the actual product, equipment
or machinery in the real world. The integration layer bridges
real and digital world and contains virtual representations of
the assets. The next layer of communication interconnects
diverse systems and digital representation on network protocol
level over switches, in order to enable data access. In the
information layer, description and identification are added to
relevant data. The functional layer describes and enables con-
trol of the asset itself. The last layer on top, is corresponding to
the organizational and operational processes of the business,
similar to an ERP system.

The levels are extended with the product, which is the
uniquely tailored good for the customer and thereby character-
izes one goal of Industry 4.0 with lot size one. Additionally,
the connected world is included on the upper end of the
automation pyramid. On top of it, the RAMI 4.0 introduces
the concept of administrative shells that encapsulate an asset
into the digital world.

In the third dimension of the life cycle of a product and
value stream definition the product is in the focus. Here the
development and production stages of a product are considered
together with the required maintenance usage.

There are several challenges hindering the RAMI 4.0 con-
form implementation of a data driven analytic use case. Major
hindrances are related to the accessibility, discoverability and
dataset interoperability of data [22].

The data accessibility challenge relates to physical re-
strictions when accessing industrial data sources. These data
sources are generally distributed along the vertical hierarchy of
the automation pyramid. On the lowest levels, data is produced
by machines at the highest granularity. In an industrial setting
the flawless operation of these machines on the shop-floor is
critical. Therefore, access to these devices is usually strictly
restricted. However, from an analytic point of view, these fine-
grained data often provide the most detailed insights into the
process. Which then again leads to the problem that all amount
of data produced by devices need to be stored and transmitted.
Therefore, limited network capacities impose a restriction to
the access of data. This challenge is located on the layers of
asset and integration, where the digitalization in RAMI 4.0 of
the real device occurs, but also on the communication layer
in order to enable the interconnection.

Fig. 1. The RAMI 4.0 reference architecture picture [30], showing the three
dimensions of layers, life cycle & value stream as well as hierarchy levels.

Independence of the solution for the accessibility challenge
the discoverability or findability of data sources is another
challenge. Even if all sources are accessible, it is still unclear
what kind of information they contain. This means that it is a
challenge for a data scientist to find data related to the use case
if it is stored in a data lake alongside the raw data of all produc-
tion data.Analytic use cases are often driven by the cognitive
abilities of data scientists. They have the necessary expertise
to understand the process to be optimized and have a general
understanding of relevant criteria, but it is often unclear from a
technical point of view where to find suitable use case related
data. This identified problem mainly resides at the information
layer in RAMI 4.0, which only defines the relevant data to be
present, but gives no clues about how to act about this. After
being able to access data sources and being able to describe
and understand them, the final challenge of data analytics is
related to the data set incompatibilities. For example, there
could be two machines that perform the same production
process but generate data that cannot be transformed in a
consistent unified format. Consequently, the underlying goal of
all approaches is to achieve interoperability between different
data sources. Interoperability can be be summarized as the
possibility to utilize resources from heterogeneous resources
in unison, despite their technical, syntactical, semantic or
organizational differences [9], [29]. Looking again at the
RAMI 4.0 layers this is directly correlated to the functional
layer.

In summary there are three major challenges when design-
ing an architecture for Industry 4.0 scenarios that build on data
lakes. The first challenge is to enable technical interoperability
to achieve accessibility even to fine granular machine data.
The second challenge is to implement a method that supports
discoverability of use case related data by data scientists and
the last challenge is to deal with data set interoperability to
allow data scientists to query data in a consistent semantic and
syntax.

III. STATE OF THE ART

In the past, a number of high-level architectures have
been proposed to meet the aforementioned challenges [14].
One such high-level architecture is the so called ’big data
pipeline’ published in [3]. The authors describe a serial process
of multiple phases which are necessary steps to enable the
analysis of data.The pipelines give readers a basic overview
on how to generally extract value from big data, but does not
describe how to link the various phases in the pipeline, nor
how to implement the contents of the individual phases.

Similar to RAMI 4.0, the “Industrial Data Space” intro-
duces a five-layer structure [26]. It focuses mainly on the
description of different roles within one “data ecosystem”.
Each role having certain functions, depending on the layer.
E.g., authorization of data usage is a task for the data owner
in the functional layer. This reference architecture establishes
roles and assigns responsibilities in the data space on a higher
level, but does not deal with findability.

Furthermore, Mohsen et al. [16] present a critical review of
the different reference architectures for smart manufacturing
including RAMI 4.0, IIRA, IBM Industry 4.0 and NIST
Smart manufacturing. Their expert based interview approach
comes to the conclusion that there is a lack of micro-service
definitions in the current architecture designs and that none
define a proper ready-to-use implementation. However, they
also state that due to the similarities all references describe
an interchangeable idea, leading to our decision on using the
RAMI 4.0 as representative in this paper.

Lastly, the Internet of Things (IoT) is the extension and
definition of bringing the Internet to everything and embed-
ding it into sensors and devices all around [12]. Therefore,
even the specialized Industrial Internet of Things (IIoT) is
conceptually similar, but there are technical and organizational
barriers, making the industrial application of IoT approaches,
unfeasible.

As all of these references and guidelines do not yield a
direct usable nor implemented solution that tackles all the
aforementioned three challenges. Hence, in the following we
take a closer look at specific solutions that are state-of-the-
art with regards to the three identified challenges of data
acquisition, findability and data usage.

Data Acquisition : Theorin et al. [28] proclaims the Line
Information System Architecture (LISA) that uses the idea
of an Enterprise Service Bus (ESB) to reduce point-to-point
connections in a traditional client/server approach by making
use of service mediation techniques. They claim to have made
the service oriented architecture principle of ESB together
with an event-driven bus system industrially applicable and
scalable based on ActiveMQ. LISA uses an own message
format to in-cooperate source systems and thereby solve the
homogenization aspect.

Kirmse et al. [13] describe an approach with a lightweight
architectural framework and integration chain capable of ab-
stracting the specifics of individual data source systems includ-
ing legacy devices in the manufacturing domain. It deals with

decoupling of different network zones as well as security levels
by enforcing a message queue based technique all realized in
open source technologies.

Bonci et al. [5] show a database-centric approach based on
cyber-physical production systems. The idea to use RDBMS
along with the SQL query language is quiet established;
their novel approach however focuses on lightweight database
synchronization through distributed replication on every CPS
device. Furthermore, they add the swarmlet concept by facili-
tating the publish/subscribe paradigm for IoT devices and add
a plug-in structure, which extends the central database to a
service-oriented architecture similar to an Enterprise Service
Bus. The general principal followed in architectures which
enable the combined use of distributed entities in the IoT
context can be summarized as an indirection architecture. An
indirection approach consists of a mediator that tries to enable
the bridging of interoperability. Such a mediator is often also
called middleware. Razzaque et al. [23] present a survey about
different concepts and implementations of such middleware
systems in the IoT context. As as conclusion they state, that
semantic and syntactic interoperability is the most lacking in
current systems, with syntactic interoperability being the most
challenging. Furthermore, agent systems are introduced as part
of the IoT ecosystem, where the concept of proactive handling
and communicating is depicted.

Data Discoverability: The challenge of finding the right
data is often tackled by systems dealing with meta data
management. Meta data, generally defined as data about data,
can be any additional data and knowledge providing further
insight [15]. Various approaches exists to deal with meta data.
The simplest form is a data catalog containing an item, e.g.,
a data source and a set of tags, i.e., keywords [25]. The dis-
coverability is facilitated by providing a search interface that
allows to search for catalog entries based on the tags. Therein
lies the problem with this approach, if an entry is not tagged
extensively enough, i.e., a tag is missing, the entry cannot
be found. Furthermore, word relations, such as synonym, hy-
pernym (generalization) and hyponyms (specification) are not
considered. Thus an extension to the tag system is the use of a
semantic modelling approach, which especially includes these
word relations and thereby allows much deeper understanding
and discoverability even when not using the exact term. .
Pomp et al. [21] present an integration approach using a user-
centric dynamic modelling approach, ESKAPE. The approach
is focused on establishing a common semantic understanding,
i.e., a knowledge graph, while preserving the individual user
semantics. Also in [22] the impact of such an approach on the
reduction of the time-to-analytics was discussed. Strassner et
al. [27] present a concept similar to ESKAPE focusing on
semantic interoperability. They concentrate on the IoT and
thus base their methods on a greenfield mentality. In result,
such concepts often are not usable for industrial applications
and also provide no room for a transitory state where new
”smarter” devices and legacy hardware can operate side-by-
side.

Extraction Agents

Semantics

Data Processing: The use of semantically adaptable
applications is researched extensively in the context of web
applications, summarized under the terms of semantic web
and linked open data. Approaches in this context are centered
around the use of ontologies to describe web services using
the Web Ontology Language (OWL) and performing reasoning
on them using SPARQL [4]. Barder [2] presents a concept for
self-governing tasks, i.e., detecting changes to their inputs and
switching to more adequate data sources. Phillip et al. [19] de-
scribe a decentralized combination of services for a multi-step
analytic task, where semantic interchangeability for substeps
is known beforehand. The applicability beyond web services
is currently unclear, i.e., if and how these approaches would
cope in a setting where the processing tasks are not limited to
web technologies (HTTP, REST, JSON).

Application: Finally, we take a look at related work that
deals with the user’s view of big data analysis scenarios in
order to deduce which factors are relevant for the application
layer. Elgendy and Elragal [6] developed a big data, analytics
and decision framework that guides analysts through four
layers to support decision making in big data applications. The
intelligence layer deals with data acquisition, discovery and
preparation. The second layer is called design and consists of
model planning and data analytics. It presents analytic tools
to the user to perform analysis tasks and generate insights
from the data set. The third layer, choice, integrates business
tasks into the framework e.g. visualization and reporting. The
top layer is called implementation and deals with process
monitoring.

Sacha et al. [24] contribute a conceptual visual analytics
and machine learning pipeline. They define several steps that
cover typical analysis interaction options and also provide ex-
amples of how to support the interactions. Therefore, defining
pipelines seem to be a convenient tool to perform all steps of
a data analytics cycle.

Kinjo et al. [10] developed a cloud-based next-generation
sequencing big data analysis platform. The system consists of
four subsystems: Job Management System, Data Management
System, Pipeline Management and Genome Explorer. To use
the system, there is a graphical user interface that allows users
to create new projects. In a project, the user can upload new
data files and configure analysis pipelines based on a data file.
Configured analysis pipelines can then be started or rerun, for
example if the data was updated. The analysis progress can
be tracked by the user and in the end a HTML report will be
created.

IV. AGENT-BASED BIG DATA ANALYSIS ARCHITECTURE
We discussed challenges for data lake based Industry 4.0

architectures in Section II and showed some existing solutions
for those challenges as well as reference architectures in
Section III. We introduce a new data lake based architecture
that combines some of the existing solutions and extends them
to fit to the RAMI 4.0 reference architecture to meet Industry
4.0 standards. The architecture consists of four layers (see
Figure 2) that allow data providers to offer data in a consistent

Data Scientist

Fig. 2. Components and roles of the proposed layered agent-based big data
analysis architecture.

way and make it available to data scientists. Furthermore, we
consider a standardized application layer to integrate the data
analysis into business activities.

The lowest layer is served by data providers. Data providers
provide data through one ingestion agent per data set. An
ingestion agent itself contains information about the provided
data that enable the semantic layer to reference the data based
on its semantic context. The semantic layer stores and manages
all information of the referenced data sets. It processes data
queries from the top layers executed by data scientists and
suggest matching data sets for a specific use case. To merge
those data sets into a consistent format and structure, the third
layer implement extraction agents. Extraction agents provide a
single endpoint to access a collection of data sets in a format
that is defined by the data scientist. Data scientists interact
with the application layer at the top of the architecture. We
define a standard analysis cycle that utilizes data management
from the other layers and embeds the analysis into business
activities.

A. Semantic Data Ingestion
The semantic data ingestion process consists of modular

source specific agents that are responsible for the data col-
lection. Here diverse data source system are connected via a
specific agent to the semantic integration system.

In context of RAMI 4.0 hierarchy layers the agent imple-
ments the ’administrative shell’ of the assets in order to extract
data and communicate them to the semantic ingestion system

to get into information that are usable for analytic applications.
Each agent is responsible for encapsulating protocols and
machinery specific connections. They rely on a common

framework that enforces same behavior and are independent by
using modules, specific for each protocol. The agents behave

alike to the semantic data platform and provide same func-
tionality of acquiring data, regardless of the data’s dynamic.

A data source can be a continuous stream as well as a finite
batch set that also can be updated at definitive time intervals. In
the following, we give two examples. In the first case, we look
at a traditional relational database (RDBMS) as batch source,

while for the second case we look at a machine connected
via OPC UA that provides a continuous stream of changing
values. Each agent collects meta information about the data

Ingestion Agents
Data Provider

Application

source system, in order to combine a unique fingerprint:source
system information, data syntax This fingerprint is used to
uniquely identify the data source stream, in order to effectively
re-recognize same input sources.

Each agent is responsible for the data transfer and therefore
has to incorporate a buffer or queue system, when required.

Especially, in circumstances where the source system has no
persistence of data, it is the responsibility of the specific agent
to assure data completeness. In case of source systems that

store and hold data for a longer period of time on their own,
this mechanism is optional. Databases are a typical example
of source systems that maintain a longer ”history” of data that
can still be retrieved at a later time (to some extend). But
also systems like OPC UA, provide a history server which
can yield such a functionality, so that the agent can rely on
these functions to retrieve data even when the target system is
not reachable or capable of persisting incoming data streams.

In order for the agent to connect to the data source, it
requires physical access to the machine at hand. The agent
therefore resides either directly and physically at the machin-
ery or has access to it, meaning a firewall exemption rule.

Agent configuration parameters necessary for connecting
into a source system and describing it with meta information:
connection information, authentication, location information,
Time-To-Live(TTL), owner, trigger, whitelist

The data source connection can either be a hostname or
the IP address with the respective port number for a TCP/IP
connection, but also a Uniform Resource Identifier (URI)
which denotes the protocol.

The location information denotes the originating geo loca-
tion where the agent is collecting the information from and
thus where the data is generated. This spatial information is
not only limited to the location in the production process,
but hints at the geographic location in order to help with
synchronization issues when having to deal with different time
zones.

Time-to-Live (TTL) is a suggested liveness time of the
data, regarding how long they are considered valid, but also
in concern to archival periods, which are required by some
regulations e.g. for warranty or security reasons.

The owner information not only denotes a human contact
point that is responsible for the source system, but also acts a
the liable entity for the data ownership.

The trigger information regards the way of data retrieval
from the data source system. The most generic differentiation
is between push and pull principal. In a stream scenario the
source system pushes new data directly to the agent. This
might even achieved with the help of a pub-sub mechanism,
so that the agent subscribes directly at the source system
for changes. In case of OPC UA there is the differentiation
between interval and change trigger for this subscription based
approach. The interval is a time based continuous polling-like
data acquisition which is initiated by the server itself. The
change trigger defines a threshold value by which the specified
value has to change in order to be send out to the agent. In
RDBMS systems, a polling mechanism to detect data changes

has to be facilitated. Change Data Capture techniques exist in
order to detect changes in a RDBMS. A simpler mechanism
can use identification fields, such as primary key, if only new
entries are added into a table or field that denote their last
change, e.g. an updating timestamp on modification.

Last configuration option is a whitelist of available and
wanted data points depending on the source system; for
RDBMS systems this is the schema and/or table, for OPC
UA the node names (or sub-tree), for message broker systems
such as MQTT, Kafka or AMQP the topic names.

Providing a new data source: The following denotes the
steps required to connect a new data source, after the initial
configuration of the ingestion agent. Upton startup the agent
establishes a connection to the data source. The agent exam-
ines the system, determines its fingerprint and checks if it is
already known. If the system was not known, based on the
whitelist the agent extracts a data sample and defines a data
syntax description model. Here each data field is provided with
the name, the actual data type as defined in the source system
and some example values. This information is transmitted to
semantics layer as part of a registration. In this layer the data
provider is now able to semantically model the data source,
defining the concepts and their relations used in the data
source. During this time the agent is in a pending state.

After the semantic model is created by the data provider,
which is determined by a status API, the agent begins sending
of actual single data points. Here a common unified data
exchange format, that enables syntactic description is required.
One example could be based on Apache Avro [1], which pro-
vides this capability. Future scenario includes that each agent
has a unique signature identifier, so that their authorization and
authentication can be acknowledged over general identification
with public key infrastructure or there-like. Thereby, it enables
the scenario of a simple plug-and-produce factory setup.

For reduced complexity and current approach, changing and
existing data sources are considered as new data sources.

B. Data Extraction
In the previous section, we focused on data access and

acquisition. This step included the use of ingestion agents to
get a syntactic model of a data source and the definition of a
semantic model. The semantic model contains a mapping of
the data points to concepts of a knowledge graph, describing
their meaning [21]. Therefore, at this point data is stored
semantically enriched and is available to be consumed or
semantically extracted. We define semantic data extraction in
our approach, therefore, by:

• Semantic Look-up Finding data sources.
• Semantic Transformation & Processing: Transforming

between semantically related concepts and processing of
data points based on their semantic properties.

• Semantic presentation Presenting the result in an appli-
cation specific semantic and format.

Semantic Look up From a usage perspective, the look up of
required data sources is always the first step. In our approach
this this search includes a semantic look up of data sources

based on concepts used in the semantic model of a data
source. Additionally, the search considers semantic similarity.
For example, the knowledge graph constructed via ESKAPE
contains synonyms and related concepts based on external
information sources [18], [20].

Semantic transformation defines the usage of data points
based on their semantics. One typical application in this
setting is the transformation between related concepts based
on their measurement unit. For example, consider data sets
containing distance measurements. One data set contains mea-
surements in the English unit mile, while another contains
measurements in the SI unit meters. A typical scenario for
a semantic transformation would be: A user makes a request
for Distances Measured in Kilometer the knowledge graph
contains the knowledge that Distance can be Measured in
Miles, Kilometer, Meter, Based on this knowledge and
the request a semantic homogenization of the two data sets
will be performed automatically (without the knowledge of
the user), i.e., convert miles and meters to kilometers. This
use case can also be seen as an extension of the look up
functionality in terms of semantic similarity. Searching for
distance would yield both data sets. The extension would now
be the additional information about the transformation ability
of units across different measurement systems.

Semantic reasoning & processing goes a step further, instead
of concerning with singular concepts and their immediate
semantic neighborhood, the combination of different concepts
and a potentially reasoning between them is required for se-
mantic processing. Consider following example: The previous
data sets contain next to the distance measurements another
measurement, a duration. Also for this example, the duration
was measured in different units of time, e.g., seconds and
minutes. A scenario for semantic processing would be: A user
makes a request for Velocity measured in km/h. None of the
data sets contains this concept explicitly. A semantic reasoning
must be performed to identify that Velocity can be determined
by combining Distance and Duration. An application based
on this premise would not care about the specifics of the
actual data set, e.g. Miles vs Kilometers, as they can be
transformed into the required semantics, as explained before.
This reasoning will be performed by comparing the semantic
models of different data sets in terms of alignment with
local (i.e. similarity of the individual models) and global
similarity (i.e. similarity when considering additional concepts
and relations of the knowledge graph).

Semantic presentation The final component of the extraction
is related to the presentation of the data, i.e., the output
format and protocol. Making use of a template engine, e.g.,
mustache [17] would allow user specific output formats.
Applications might require the data to be presented in a
specific protocol. For example, the result might be needed
as a HTTP/REST-based service producing content in a JSON
format, while a process control logic might require a specific
PLC protocol and format.

The whole process, i.e., selecting and retrieving the data,
which was collected by the ingestion agents, performing a

Fig. 3. The usage cycle in the application layer.

semantic homogenization and processing can be implemented
by a flexible micro service approach. Each of the steps
are defined as processing task, implementing a processing
programming interface, defining a semantic function. Such a
function takes a set of input semantic models and produces
another semantic model. Each of such tasks needs to be stored
in a processing task repository. Based on the user request our
approach will look up required transformations implicitly or
present an unfulfilled gap in the processing chain. Since we
follow a bottom up approach, i.e., starting with a clean slate,
most of these transformations will be unknown at the initial
setup of the system. The fulfillment of such gaps can be incited
by a per-use reimbursement. The task repository might contain
deployable code or references to external resources, which
provide the execution capabilities. For achievable requests a
complete pipeline will be defined. The system will create an
extraction agent, which will take the pipeline, orchestrate it
and maintain its operation. Scenarios of cloud, edge or mist-
computing approaches are feasible here, i.e., individual steps
of the pipeline might run in different locations, for example,
because of computing or latency requirements. The extraction
agent also acts as a continuous communication channel for
the application layer, providing data, notifying about changing
conditions in the sources systems, adapting to these changes
or to new requirements of an analytic use case or application.

C. Application Layer

The tools and methods to search, select and analyze data
as well as create reports are implemented in the application
layer. We define an extend data analytics cycle that should
be supported by tools implemented in the application layer
to utilize the underlying layers to optimally support the most
common tasks of a data scientist. The extended cycle is based
on the analytics cycle presented in Section I and related work

Semantic Data Query Semantic Ingestion

Choose Data Format

Configure Analysis

Test Run & Refinement Provide Data

Automated Analysis
& Reporting

Data Provider

Data Scientist

presented in Section III and allows close integration with
presented agents and the overlying business activities.

Figure 3 gives an overview of the usage cycle in the
application layer. The first step is the semantic use case
specific querying of data. In this step, data scientists can view
all suggested data sets that fit their use case. Corresponding
queries are processed by the semantic management of the
data records. Data scientists will then evaluate the list of data
sets found, select matching sets, and determine their preferred
target format and structure to configure the extraction agent
for the selected data set.

Then, the exploratory analysis begins. The application layer
provides machine learning algorithm that are used in the
respective domain and allows their configuration (e.g. DBScan
for clustering with configurable parameters epsilon and min
samples). The actual algorithm needs to be implemented in
a big data processing engine to handle large data sets. The
extracting agent will provide an endpoint for the engine to
query all extracted data.

The application layer also needs to provide tools for vi-
sualizing the data and the results of the configured anal-
yses to perform test runs and refine automatic analyses.
If an analysis provides valuable insights, the analysis and
the associated visualization can be saved for a report. The
report configuration can be implemented by presenting slide
layouts, images from automated analyses and text field to
add comments. In addition, problems with the data sets or
requests for supplementary data records can be passed to data
providers. The extracting agent then distributes the requests
to the suitable data providers via the semantic layer and data
providers can react by providing updated data sets through
semantic ingestion.

In the final step, the data scientist can set up the automatic
generation of further reports for the aggregated analyses. This
allows, for example, to observe effects of initiated process
improvements or quality parameters to be continuously moni-
tored. There is also a need for an overview of active automated
analyses and the status of associated analysis jobs that are
processed in the big data processing engine.

V. DISCUSSION
In Section II we presented several challenges, in this chapter

we are going to discuss how the presented approach can
help to solve these problems. Additionally, we will show that
our approach is compatible with current industrial reference
guidelines. As noted in Section III, these references are
effectively interchangeable, we chose the RAMI 4.0 [30] due
to its importance in the context of Industry 4.0. Therefore,
the concepts of this paper and the discussion apply to any
of the presented references. Specifically, we will inspect the
architectural dimension of the RAMI 4.0. The architectural
dimension consists of six layers, starting with the physical
world represented by the Asset layer, the layers on top of it are
concerned with the digital aspects. Our architecture operates
from the second layer of the RAMI 4.0 onwards, therefore,
is located in the digital world.

Fig. 4. Comparison of the presented architecture in relation to the RAMI 4.0
reference architecture, showing how agents are encapsulated by shells, medi-
ating based on semantic information modelling.

Accessibility: The first challenge we described was re-
lated to accessibility. This challenge starts to manifest in the
Asset layer, which contains physical devices, for example a
manufacturing robot. In our architecture we rely on the exis-
tence, e.g., a digital interface. These interfaces are, however,
located on the next layer, Integration, building an immediate
bridge between physical and digital world. For example, a PLC
provides a digital interface to the robot. Conceptually we do
not limit our ingestion agents to operate on this level, i.e, be
part of the digitization of an analog process. For example,
consider physical paper reports, our ingestion agent could
be implemented as a device that scans these reports and,
therefore, provides a digital interface to the physical entity.
Most of our ingestion agents are, however, located on the
next layer, Communication. The Communication layer of the
RAMI 4.0 describes the problem of technical interoperability,
e.g., different communication media and protocols. The major
benefit of our ingestion agents is related to their adaptability
when dealing with different protocols and interfaces.

Discoverability: The next problem manifests in the lay-
ers above the previous ones, i.e. the Information layer. The
RAMI 4.0 is presenting a concept called ’administrative shell’.
This shell is conceptually supposed to act as a mediator or
translator between layers and their respective entities. In our
architecture, a technical shell and a semantic shell effectively
surround our ingestion agents. For example, in Figure 4 the
lower two agents are encapsulated by a lower shell responsible
for data access, while the upper shell provides the semantics
needed to describe the accessed data on the Information layer.
Our approach, specifically, therefore, provides the possibility
to semantically describe assets and their data in order to find,
manage and use them based on their semantic.

Data set Interoperability: The next challenge is related to
usage of data, it starts to manifest most prominently from the
Functional layer on wards. In our architecture, we envision the
extraction agents to act as the bridge between the Information

Business

Functional

A B

Information B A

Communication

Integration

Asset

layer and the Functional layer. The information shell contains
semantic look up and semantic transformation capabilities
providing consistent semantics, while the functional shell
allows for application specific (functional) access to assets.
Implications for the ’Business’ layer are the result of adaptive
semantic applications described in Section IV-C. In summary,
our approach is an implementation that is compatible with the
second to last layer of the RAMI 4.0 reference architecture.

VI. CONCLUSION

In this paper we presented how the challenges of data acces-
sibility, discoverability and data set interoperability manifest
when implementing a concept like the Reference Architectural
Model Industry 4.0 (RAMI 4.0). We described a realization of
the concept based on an implementation using an agent-based
approach. The approach is centered around a data lake system,
considering the heterogeneity of industrial data sources and
assets, by providing mechanisms to semantically enrich these
sources, describing their contents and formats during the
ingestion stage. For the utilization of the data, we described
how the data could be accessed and processed semantically by
self-adapting extraction agents, providing flexible interfaces for
data driven applications.

Lastly, we discussed how the presented approach is con-
sidering the challenges arising for data driven applications in
regard to the layers defined by the RAMI 4.0.

Future work involves the realization of the conceptual
approaches of processing data semantically and adaptively.
We plan to evaluate our implementation within real-world
scenarios.

ACKNOWLEDGMENT

The authors would like to thank the German Research Founda-
tion DFG for the kind support within the Cluster of Excellence
Internet of Production (IoP). Project-ID: 390621612

REFERENCES
[1] Apache Software Foundation. Apache Avro, 2009.

https://avro.apache.org - last accessed: 2019-04-18.
[2] Sebastian R Bader. Automating the dynamic interactions of self-

governed components in distributed architectures. In European Semantic
Web Conference, pages 173–183. Springer, 2017.

[3] Elisa Bertino, Philip Bernstein, Divyakant Agrawal, Susan Davidson,
Umeshwas Dayal, Michael Franklin, Johannes Gehrke, Laura Haas, Alon
Halevy, Jiawei Han, and Hosagrahar Visvesvaraya Jadadish. Challenges
and opportunities with big data. Whitepaper, 2011.

[4] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The
story so far. In Semantic services, interoperability and web applications:
emerging concepts, pages 205–227. IGI Global, 2011.

[5] Andrea Bonci, Massimiliano Pirani, and Sauro Longhi. A database-
centric approach for the modeling, simulation and control of cyber-
physical systems in the factory of the future. IFAC-PapersOnLine,
49(12):249–254, 2016.

[6] Nada Elgendy and Ahmed Elragal. Big data analytics in support of the
decision making process. Procedia Computer Science, 100, 2016.

[7] International Organization for Standardization. ISO 7498. Information
processing systems – Open Systems Interconnection – Basic Reference
Model, 1983.

[8] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data
concepts, methods, and analytics. International Journal of Information
Management, 35(2):137 – 144, 2015.

[9] IERC. IoT Semantic Interoperability: Research Challenges, Best Prac-
tices, Recommendations and Next Steps. EUROPEAN RESEARCH
CLUSTER ON THE INTERNET OF THINGS, 2015.

[10] Junichi Imoto, Norikazu Kitamura, Sonoko Kinjo, Kazuho Ikeo,
Norikazu Monma, Sadahiko Misu, Kazutoshi Yoshitake, and Takashi
Gojobori. Maser: one-stop platform for NGS big data from analysis to
visualization. Database, 2018, 04 2018.

[11] ISO/TC 184/SC 5 Interoperability, integration, and architectures for
enterprise systems and automation applications. IEC 62264-1:2013:
Enterprise-control system integration – Part 1: Models and terminology.
ISO, 2013.

[12] Sabina Jeschke, Christian Brecher, Tobias Meisen, Denis O¨ zdemir, and
Tim Eschert. Industrial internet of things and cyber manufacturing
systems. In Industrial Internet of Things, pages 3–19. Springer, 2017.

[13] Andreas Kirmse, Vadim Kraus, Max Hoffmann, and Tobias Meisen. An
architecture for efficient integration and harmonization of heterogeneous,
distributed data sources enabling big data analytics. In Proceedings of
the 20th International Conference on Enterprise Information Systems -
Volume 1: ICEIS,, pages 175–182. INSTICC, SciTePress, 2018.

[14] Andreas Kirmse, Felix Kuschicke, and Max Hoffmann. Industrial big
data: From data to information to actions. In Proceedings of the 4th
International Conference on Internet of Things, Big Data and Security
- Volume 1: IoTBDS. INSTICC, SciTePress, 2019.

[15] David Marco. Building and Managing the Meta Data Repository: A
Full Lifecycle Guide. Wiley & Sons, 2000.

[16] Mohsen Moghaddam, Marissa N. Cadavid, C. Robert Kenley, and
Abhijit V. Deshmukh. Reference architectures for smart manufacturing:
A critical review. Journal of Manufacturing Systems, 49, 2018.

[17] Mustache. Mustache.github.io, 2019. https://mustache.github.io -last
accessed: 2019-04-18.

[18] Alexander Paulus, Andre´ Pomp, Lucian Poth, Johannes Lipp, and Tobias
Meisen. Gathering and combining semantic concepts from multiple
knowledge bases. In ICEIS (1), pages 69–80, 2018.

[19] Patrick Philipp, Achim Rettinger, and Maria Maleshkova. On automating
decentralized multi-step service combination. In 2017 IEEE Interna-
tional Conference on Web Services (ICWS), pages 736–743. IEEE, 2017.

[20] Andre´ Pomp, Johannes Lipp, and Tobias Meisen. You are missing a
concept! enhancing ontology-based data access with evolving ontologies.
In 2019 IEEE 13th International Conference on Semantic Computing
(ICSC), pages 98–105. IEEE, 2019.

[21] Andre´ Pomp, Alexander Paulus, Sabina Jeschke, and Tobias Meisen.
Eskape: Information platform for enabling semantic data processing. In
ICEIS (2), pages 644–655, 2017.

[22] Andre´ Pomp, Alexander Paulus, Andreas Kirmse, Vadim Kraus, and
Tobias Meisen. Applying semantics to reduce the time to analytics
within complex heterogeneous infrastructures. Technologies, 6(3), 2018.

[23] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade,
and Siobha´n Cla. Middleware for internet of things: A survey. IEEE
Internet of Things Journal, 3(1):70–95, 2016.

[24] Dominik Sacha, Michael Sedlmair, Leishi Zhang, John A Lee, Jaakko
Peltonen, Daniel Weiskopf, Stephen C North, and Daniel A Keim. What
you see is what you can change: Human-centered machine learning by
interactive visualization. Neurocomputing, 268:164–175, 2017.

[25] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Mary Manohar, Sonal Patil, and Laura Pearlman. A metadata
catalog service for data intensive applications. In SC’03: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing, pages 33–33.
IEEE, 2003.

[26] Fraunhofer Society. Reference architecture model for the industrial data
space. Whitepaper, 2017.

[27] John Strassner and Wael William Diab. A semantic interoperability
architecture for Internet of Things data sharing and computing. 2016
IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, 2017.

[28] Alfred Theorin, Kristofer Bengtsson, Julien Provost, Michael Lieder,
Charlotta Johnsson, Thomas Lundholm, and Bengt Lennartson. An
event-driven manufacturing information system architecture. IFAC-
PapersOnLine, 48(3):547–554, 2015.

[29] Hans Van Der Veer and Anthony Wiles. Achieving Technical Interop-
erability. European Telecommunications Standards Institute, 2008.

[30] VDI/VDE Society Measurement and Automatic Control (GMA). Ref-
erence architecture model industrie 4.0 (RAMI4.0). Whitepaper, 2015.

[31] Ray Y. Zhong, Xun Xu, Eberhard Klotz, and Stephen T. Newman.
Intelligent manufacturing in the context of industry 4.0: A review.
Engineering, 3(5):616 – 630, 2017.

	Andreas Kirmse, Vadim Kraus, Tristan Langer, Andre´ Pomp
	Prof. Dr.-Ing. Tobias Meisen

