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Abstract—With the latest advances in digitalization and Indus- 
try 4.0, the manufacturing industry is collecting more and more 
production data. However, with the increasing interconnection 
of machines, not only the volume but also the variety of data 
is being expanded. The data life cycles of collection, processing, 
combining, analyzing and feeding new findings back into sources 
are becoming increasingly challenging for data scientists to 
complete. Reference architectures such as the RAMI 4.0 provide 
conceptual guidelines to address these problems. In this paper, 
we focus on the implementation of an agent-based architecture 
that is in line with RAMI 4.0. This architecture implements the 
guidelines provided by RAMI 4.0 by applying modern approaches 
from the areas of data lake based data acquisition, semantic 
description, look up and processing as well as information 
utilization. 

Index Terms—Data acquisition, Data integration, Information 
management, Multi-agent systems, Big Data applications, Indus- 
try applications, RAMI 4.0 

 
I. INTRODUCTION 

With the emerging of Industry 4.0, more and more man- 
ufacturing systems are being upgraded to enable intelligent 
manufacturing. Sensors are installed to map the state of 
physical systems into the digital world and machines are 
interconnected to derive optimization potential for production 
from the data flow [31]. Initial attempts of bridging the 
gap between the physical and digital domain, include the 
implantation of custom solutions for collecting, storing and 
analyzing data. For instance, companies started to centralize 
data collection from manufacturing systems by creating data 
warehouses to have a single structured data source for business 
analysis. Data warehouses use a schema-on-write approach 
that requires every data source to be processed and organized 
into one or multiple predefined data schemes. Therefore, using 
data warehouses as a versatile general purpose storage system 
requires complex processing and structural adaptation before 
new data sources are available. However, in industrial produc- 
tion, which is driven by the fear of losing hidden insights 
from shop floor data, all data sources are currently being 
identified as potentially useful and, therefore, are preemptively 
recorded [8]. Due to the increasing number of machines, the 

amount and also variety of data increases immensely. Conse- 
quently, using data warehouses became increasingly costly and 
the use of data lakes has emerged as an suitable storage and 
staging layer. Data lakes, in contrast to warehouses, store all 
data without modification, which provides cheaper storage and 
integration of new data sources. However, analyzing the data in 
a data lake to derive hidden insights is more complicated than 
with data warehouses, because a data analyst must first find 
and understand the stored data. Hence, companies started again 
to implement and introduce tools that facilitate data analytics 
for Industry 4.0 data lake architectures. 

These trends show that the manufacturing industry is trying 
to achieve the goals of Industry 4.0 by implementing solutions 
for the different aspects of collecting, storing, integrating, 
discovering and analyzing data, leaving uncertainty about the 
individual implementation as well as their interoperation. To 
overcome this issue, different Industry 4.0 reference architec- 
tures were proposed, providing guidelines on how to imple- 
ment overall solutions for bridging the physical and digital 
domain. For instance, these architectures need to support the 
collection of appropriate data sets and provide feedback on 
data sets to the associated data provider in order to adapt to 
the requirements of the analysis use case [14]. One of these 
architectures is the Reference Architectural Model Industry 4.0 
(RAMI 4.0) [30]. However, since RAMI 4.0 is only an abstract 
framework, there is a need for more concrete architectures that 
show how to implement data lakes for the data analytics use 
case within Industry 4.0 applications. 

In this paper, we introduce an approach for the imple- 
mentation of a RAMI 4.0 conform architecture dealing with 
connecting industrial data sources to a data lake storage system 
and using the data for analytic use cases. We consider semantic 
enrichment by adding semantic models during the integration 
phase from ingestion agents and user input. The usage of 
data considers semantic extraction by corresponding agents, 
providing semantic and structural transformation tasks. The 
combined use of the agents is utilized in an extended data 
analytic cycle providing applications with a close integration 
to business processes. 
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II. RAMI 4.0 AND IMPLEMENTATION CHALLENGES 

In this section, we explain the RAMI 4.0 reference architec- 
ture based on its layered structure and derive implementation 
challenges for each layer. 

RAMI 4.0 refers to the service oriented Reference Archi- 
tectural Model Industry 4.0, which defines hierarchy levels for 
organizing the digitalization of industrial components [30]. In 
its three-dimensional representation it is based on the OSI 
software layer model [7], the automation pyramid [11] as 
hierarchy levels and the value stream of a product. 

Figure 1 shows the layered visualization of the OSI-based 
software model together with a depiction of the components 
in the automation pyramid scheme. The bottom asset layer de- 
scribes physical components like the actual product, equipment 
or machinery in the real world. The integration layer bridges 
real and digital world and contains virtual representations of 
the assets. The next layer of communication interconnects 
diverse systems and digital representation on network protocol 
level over switches, in order to enable data access. In the 
information layer, description and identification are added to 
relevant data. The functional layer describes and enables con- 
trol of the asset itself. The last layer on top, is corresponding to 
the organizational and operational processes of the business, 
similar to an ERP system. 

The levels are extended with the product, which is the 
uniquely tailored good for the customer and thereby character- 
izes one goal of Industry 4.0 with lot size one. Additionally, 
the connected world is included on the upper end of the 
automation pyramid. On top of it, the RAMI 4.0 introduces 
the concept of administrative shells that encapsulate an asset 
into the digital world. 

In the third dimension of the life cycle of a product and 
value stream definition the product is in the focus. Here the 
development and production stages of a product are considered 
together with the required maintenance usage. 

There are several challenges hindering the RAMI 4.0 con- 
form implementation of a data driven analytic use case. Major 
hindrances are related to the accessibility, discoverability and 
dataset interoperability of data [22]. 

The data accessibility challenge relates to physical re- 
strictions when accessing industrial data sources. These data 
sources are generally distributed along the vertical hierarchy of 
the automation pyramid. On the lowest levels, data is produced 
by machines at the highest granularity. In an industrial setting 
the flawless operation of these machines on the shop-floor is 
critical. Therefore, access to these devices is usually strictly 
restricted. However, from an analytic point of view, these fine- 
grained data often provide the most detailed insights into the 
process. Which then again leads to the problem that all amount 
of data produced by devices need to be stored and transmitted. 
Therefore, limited network capacities impose a restriction to 
the access of data. This challenge is located on the layers of 
asset and integration, where the digitalization in RAMI 4.0 of 
the real device occurs, but also on the communication layer 
in order to enable the interconnection. 

 

 
 

Fig. 1. The RAMI 4.0 reference architecture picture [30], showing the three 
dimensions of layers, life cycle & value stream as well as hierarchy levels. 

 
 
 

Independence of the solution for the accessibility challenge 
the discoverability or findability of data sources is another 
challenge. Even if all sources are accessible, it is still unclear 
what kind of information they contain. This means that it is a 
challenge for a data scientist to find data related to the use case 
if it is stored in a data lake alongside the raw data of all produc- 
tion data.Analytic use cases are often driven by the cognitive 
abilities of data scientists. They have the necessary expertise 
to understand the process to be optimized and have a general 
understanding of relevant criteria, but it is often unclear from a 
technical point of view where to find suitable use case related 
data. This identified problem mainly resides at the information 
layer in RAMI 4.0, which only defines the relevant data to be 
present, but gives no clues about how to act about this. After 
being able to access data sources and being able to describe 
and understand them, the final challenge of data analytics is 
related to the data set incompatibilities. For example, there 
could be two machines that perform the same production 
process but generate data that cannot be transformed in a 
consistent unified format. Consequently, the underlying goal of 
all approaches is to achieve interoperability between different 
data sources. Interoperability can be be summarized as the 
possibility to utilize resources from heterogeneous resources 
in unison, despite their technical, syntactical, semantic or 
organizational differences [9], [29]. Looking again at the 
RAMI 4.0 layers this is directly correlated to the functional 
layer. 

In summary there are three major challenges when design- 
ing an architecture for Industry 4.0 scenarios that build on data 
lakes. The first challenge is to enable technical interoperability 
to achieve accessibility even to fine granular machine data. 
The second challenge is to implement a method that supports 
discoverability of use case related data by data scientists and 
the last challenge is to deal with data set interoperability to 
allow data scientists to query data in a consistent semantic and 
syntax. 



III. STATE OF THE ART 

In the past, a number of high-level architectures have 
been proposed to meet the aforementioned challenges [14]. 
One such high-level architecture is the so called ’big data 
pipeline’ published in [3]. The authors describe a serial process 
of multiple phases which are necessary steps to enable the 
analysis of data.The pipelines give readers a basic overview 
on how to generally extract value from big data, but does not 
describe how to link the various phases in the pipeline, nor 
how to implement the contents of the individual phases. 

Similar to RAMI 4.0, the “Industrial Data Space” intro- 
duces a five-layer structure [26]. It focuses mainly on the 
description of different roles within one “data ecosystem”. 
Each role having certain functions, depending on the layer. 
E.g., authorization of data usage is a task for the data owner 
in the functional layer. This reference architecture establishes 
roles and assigns responsibilities in the data space on a higher 
level, but does not deal with findability. 

Furthermore, Mohsen et al. [16] present a critical review of 
the different reference architectures for smart manufacturing 
including RAMI 4.0, IIRA, IBM Industry 4.0 and NIST 
Smart manufacturing. Their expert based interview approach 
comes to the conclusion that there is a lack of micro-service 
definitions in the current architecture designs and that none 
define a proper ready-to-use implementation. However, they 
also state that due to the similarities all references describe 
an interchangeable idea, leading to our decision on using the 
RAMI 4.0 as representative in this paper. 

Lastly, the Internet of Things (IoT) is the extension and 
definition of bringing the Internet to everything and embed- 
ding it into sensors and devices all around [12]. Therefore, 
even the specialized Industrial Internet of Things (IIoT) is 
conceptually similar, but there are technical and organizational 
barriers, making the industrial application of IoT approaches, 
unfeasible. 

As all of these references and guidelines do not yield a 
direct usable nor implemented solution that tackles all the 
aforementioned three challenges. Hence, in the following we 
take a closer look at specific solutions that are state-of-the- 
art with regards to the three identified challenges of data 
acquisition, findability and data usage. 

Data Acquisition : Theorin et al. [28] proclaims the Line 
Information System Architecture (LISA) that uses the idea 
of an Enterprise Service Bus (ESB) to reduce point-to-point 
connections in a traditional client/server approach by making 
use of service mediation techniques. They claim to have made 
the service oriented architecture principle of ESB together 
with an event-driven bus system industrially applicable and 
scalable based on ActiveMQ. LISA uses an own message 
format to in-cooperate source systems and thereby solve the 
homogenization aspect. 

Kirmse et al. [13] describe an approach with a lightweight 
architectural framework and integration chain capable of ab- 
stracting the specifics of individual data source systems includ- 
ing legacy devices in the manufacturing domain. It deals with 

decoupling of different network zones as well as security levels 
by enforcing a message queue based technique all realized in 
open source technologies. 

Bonci et al. [5] show a database-centric approach based on 
cyber-physical production systems. The idea to use RDBMS 
along with the SQL query language is quiet established; 
their novel approach however focuses on lightweight database 
synchronization through distributed replication on every CPS 
device. Furthermore, they add the swarmlet concept by facili- 
tating the publish/subscribe paradigm for IoT devices and add 
a plug-in structure, which extends the central database to a 
service-oriented architecture similar to an Enterprise Service 
Bus. The general principal followed in architectures which 
enable the combined use of distributed entities in the IoT 
context can be summarized as an indirection architecture. An 
indirection approach consists of a mediator that tries to enable 
the bridging of interoperability. Such a mediator is often also 
called middleware. Razzaque et al. [23] present a survey about 
different concepts and implementations of such middleware 
systems in the IoT context. As as conclusion they state, that 
semantic and syntactic interoperability is the most lacking in 
current systems, with syntactic interoperability being the most 
challenging. Furthermore, agent systems are introduced as part 
of the IoT ecosystem, where the concept of proactive handling 
and communicating is depicted. 

Data Discoverability: The challenge of finding the right 
data is often tackled by systems dealing with meta data 
management. Meta data, generally defined as data about data, 
can be any additional data and knowledge providing further 
insight [15]. Various approaches exists to deal with meta data. 
The simplest form is a data catalog containing an item, e.g., 
a data source and a set of tags, i.e., keywords [25]. The dis- 
coverability is facilitated by providing a search interface that 
allows to search for catalog entries based on the tags. Therein 
lies the problem with this approach, if an entry is not tagged 
extensively enough, i.e., a tag is missing, the entry cannot 
be found. Furthermore, word relations, such as synonym, hy- 
pernym (generalization) and hyponyms (specification) are not 
considered. Thus an extension to the tag system is the use of a 
semantic modelling approach, which especially includes these 
word relations and thereby allows much deeper understanding 
and discoverability even when not using the exact term. . 
Pomp et al. [21] present an integration approach using a user- 
centric dynamic modelling approach, ESKAPE. The approach 
is focused on establishing a common semantic understanding, 
i.e., a knowledge graph, while preserving the individual user 
semantics. Also in [22] the impact of such an approach on the 
reduction of the time-to-analytics was discussed. Strassner et 
al. [27] present a concept similar to ESKAPE focusing on 
semantic interoperability. They concentrate on the IoT and 
thus base their methods on a greenfield mentality. In result, 
such concepts often are not usable for industrial applications 
and also provide no room for a transitory state where new 
”smarter” devices and legacy hardware can operate side-by- 
side. 
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Data Processing: The use of semantically adaptable 
applications is researched extensively in the context of web 
applications, summarized under the terms of semantic web 
and linked open data. Approaches in this context are centered 
around the use of ontologies to describe web services using 
the Web Ontology Language (OWL) and performing reasoning 
on them using SPARQL [4]. Barder [2] presents a concept for 
self-governing tasks, i.e., detecting changes to their inputs and 
switching to more adequate data sources. Phillip et al. [19] de- 
scribe a decentralized combination of services for a multi-step 
analytic task, where semantic interchangeability for substeps 
is known beforehand. The applicability beyond web services 
is currently unclear, i.e., if and how these approaches would 
cope in a setting where the processing tasks are not limited to 
web technologies (HTTP, REST, JSON). 

Application: Finally, we take a look at related work that 
deals with the user’s view of big data analysis scenarios in 
order to deduce which factors are relevant for the application 
layer. Elgendy and Elragal [6] developed a big data, analytics 
and decision framework that guides analysts through four 
layers to support decision making in big data applications. The 
intelligence layer deals with data acquisition, discovery and 
preparation. The second layer is called design and consists of 
model planning and data analytics. It presents analytic tools 
to the user to perform analysis tasks and generate insights 
from the data set. The third layer, choice, integrates business 
tasks into the framework e.g. visualization and reporting. The 
top layer is called implementation and deals with process 
monitoring. 

Sacha et al. [24] contribute a conceptual visual analytics 
and machine learning pipeline. They define several steps that 
cover typical analysis interaction options and also provide ex- 
amples of how to support the interactions. Therefore, defining 
pipelines seem to be a convenient tool to perform all steps of 
a data analytics cycle. 

Kinjo et al. [10] developed a cloud-based next-generation 
sequencing big data analysis platform. The system consists of 
four subsystems: Job Management System, Data Management 
System, Pipeline Management and Genome Explorer. To use 
the system, there is a graphical user interface that allows users 
to create new projects. In a project, the user can upload new 
data files and configure analysis pipelines based on a data file. 
Configured analysis pipelines can then be started or rerun, for 
example if the data was updated. The analysis progress can 
be tracked by the user and in the end a HTML report will be 
created. 

IV. AGENT-BASED BIG DATA ANALYSIS ARCHITECTURE 
We discussed challenges for data lake based Industry 4.0 

architectures in Section II and showed some existing solutions 
for those challenges as well as reference architectures in 
Section III. We introduce a new data lake based architecture 
that combines some of the existing solutions and extends them 
to fit to the RAMI 4.0 reference architecture to meet Industry 
4.0 standards. The architecture consists of four layers (see 
Figure 2) that allow data providers to offer data in a consistent 
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Fig. 2. Components and roles of the proposed layered agent-based big data 
analysis architecture. 

 
 

way and make it available to data scientists. Furthermore, we 
consider a standardized application layer to integrate the data 
analysis into business activities. 

The lowest layer is served by data providers. Data providers 
provide data through one ingestion agent per data set. An 
ingestion agent itself contains information about the provided 
data that enable the semantic layer to reference the data based 
on its semantic context. The semantic layer stores and manages 
all information of the referenced data sets. It processes data 
queries from the top layers executed by data scientists and 
suggest matching data sets for a specific use case. To merge 
those data sets into a consistent format and structure, the third 
layer implement extraction agents. Extraction agents provide a 
single endpoint to access a collection of data sets in a format 
that is defined by the data scientist. Data scientists interact 
with the application layer at the top of the architecture. We 
define a standard analysis cycle that utilizes data management 
from the other layers and embeds the analysis into business 
activities. 

A. Semantic Data Ingestion 
The semantic data ingestion process consists of modular 

source specific agents that are responsible for the data col- 
lection. Here diverse data source system are connected via a 
specific agent to the semantic integration system. 

In context of RAMI 4.0 hierarchy layers the agent imple- 
ments the ’administrative shell’ of the assets in order to extract 
data and communicate them to the semantic ingestion system 

to get into information that are usable for analytic applications. 
Each agent is responsible for encapsulating protocols and 
machinery specific connections. They rely on a common 

framework that enforces same behavior and are independent by 
using modules, specific for each protocol. The agents behave 

alike to the semantic data platform and provide same func- 
tionality of acquiring data, regardless of the data’s dynamic. 

A data source can be a continuous stream as well as a finite 
batch set that also can be updated at definitive time intervals. In 
the following, we give two examples. In the first case, we look 
at a traditional relational database (RDBMS) as batch source, 

while for the second case we look at a machine connected 
via OPC UA that provides a continuous stream of changing 
values. Each agent collects meta information about the data 

Ingestion Agents 
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source system, in order to combine a unique fingerprint:source 
system information, data syntax This fingerprint is used to 
uniquely identify the data source stream, in order to effectively 
re-recognize same input sources. 

Each agent is responsible for the data transfer and therefore 
has to incorporate a buffer or queue system, when required. 

Especially, in circumstances where the source system has no 
persistence of data, it is the responsibility of the specific agent 
to assure data completeness. In case of source systems that 

store and hold data for a longer period of time on their own, 
this mechanism is optional. Databases are a typical example 
of source systems that maintain a longer ”history” of data that 
can still be retrieved at a later time (to some extend). But 
also systems like OPC UA, provide a history server which 
can yield such a functionality, so that the agent can rely on 
these functions to retrieve data even when the target system is 
not reachable or capable of persisting incoming data streams. 

In order for the agent to connect to the data source, it 
requires physical access to the machine at hand. The agent 
therefore resides either directly and physically at the machin- 
ery or has access to it, meaning a firewall exemption rule. 

Agent configuration parameters necessary for connecting 
into a source system and describing it with meta information: 
connection information, authentication, location information, 
Time-To-Live(TTL), owner, trigger, whitelist 

The data source connection can either be a hostname or 
the IP address with the respective port number for a TCP/IP 
connection, but also a Uniform Resource Identifier (URI) 
which denotes the protocol. 

The location information denotes the originating geo loca- 
tion where the agent is collecting the information from and 
thus where the data is generated. This spatial information is 
not only limited to the location in the production process, 
but hints at the geographic location in order to help with 
synchronization issues when having to deal with different time 
zones. 

Time-to-Live (TTL) is a suggested liveness time of the 
data, regarding how long they are considered valid, but also 
in concern to archival periods, which are required by some 
regulations e.g. for warranty or security reasons. 

The owner information not only denotes a human contact 
point that is responsible for the source system, but also acts a 
the liable entity for the data ownership. 

The trigger information regards the way of data retrieval 
from the data source system. The most generic differentiation 
is between push and pull principal. In a stream scenario the 
source system pushes new data directly to the agent. This 
might even achieved with the help of a pub-sub mechanism, 
so that the agent subscribes directly at the source system 
for changes. In case of OPC UA there is the differentiation 
between interval and change trigger for this subscription based 
approach. The interval is a time based continuous polling-like 
data acquisition which is initiated by the server itself. The 
change trigger defines a threshold value by which the specified 
value has to change in order to be send out to the agent. In 
RDBMS systems, a polling mechanism to detect data changes 

has to be facilitated. Change Data Capture techniques exist in 
order to detect changes in a RDBMS. A simpler mechanism 
can use identification fields, such as primary key, if only new 
entries are added into a table or field that denote their last 
change, e.g. an updating timestamp on modification. 

Last configuration option is a whitelist of available and 
wanted data points depending on the source system; for 
RDBMS systems this is the schema and/or table, for OPC 
UA the node names (or sub-tree), for message broker systems 
such as MQTT, Kafka or AMQP the topic names. 

Providing a new data source: The following denotes the 
steps required to connect a new data source, after the initial 
configuration of the ingestion agent. Upton startup the agent 
establishes a connection to the data source. The agent exam- 
ines the system, determines its fingerprint and checks if it is 
already known. If the system was not known, based on the 
whitelist the agent extracts a data sample and defines a data 
syntax description model. Here each data field is provided with 
the name, the actual data type as defined in the source system 
and some example values. This information is transmitted to 
semantics layer as part of a registration. In this layer the data 
provider is now able to semantically model the data source, 
defining the concepts and their relations used in the data 
source. During this time the agent is in a pending state. 

After the semantic model is created by the data provider, 
which is determined by a status API, the agent begins sending 
of actual single data points. Here a common unified data 
exchange format, that enables syntactic description is required. 
One example could be based on Apache Avro [1], which pro- 
vides this capability. Future scenario includes that each agent 
has a unique signature identifier, so that their authorization and 
authentication can be acknowledged over general identification 
with public key infrastructure or there-like. Thereby, it enables 
the scenario of a simple plug-and-produce factory setup. 

For reduced complexity and current approach, changing and 
existing data sources are considered as new data sources. 

B. Data Extraction 
In the previous section, we focused on data access and 

acquisition. This step included the use of ingestion agents to 
get a syntactic model of a data source and the definition of a 
semantic model. The semantic model contains a mapping of 
the data points to concepts of a knowledge graph, describing 
their meaning [21]. Therefore, at this point data is stored 
semantically enriched and is available to be consumed or 
semantically extracted. We define semantic data extraction in 
our approach, therefore, by: 

• Semantic Look-up Finding data sources. 
• Semantic Transformation & Processing: Transforming 

between semantically related concepts and processing of 
data points based on their semantic properties. 

• Semantic presentation Presenting the result in an appli- 
cation specific semantic and format. 

Semantic Look up From a usage perspective, the look up of 
required data sources is always the first step. In our approach 
this this search includes a semantic look up of data sources 



based on concepts used in the semantic model of a data 
source. Additionally, the search considers semantic similarity. 
For example, the knowledge graph constructed via ESKAPE 
contains synonyms and related concepts based on external 
information sources [18], [20]. 

Semantic transformation defines the usage of data points 
based on their semantics. One typical application in this 
setting is the transformation between related concepts based 
on their measurement unit. For example, consider data sets 
containing distance measurements. One data set contains mea- 
surements in the English unit mile, while another contains 
measurements in the SI unit meters. A typical scenario for 
a semantic transformation would be: A user makes a request 
for Distances Measured in Kilometer the knowledge graph 
contains the knowledge that Distance can be Measured in 
Miles, Kilometer, Meter, .... Based on this knowledge and 
the request a semantic homogenization of the two data sets 
will be performed automatically (without the knowledge of 
the user), i.e., convert miles and meters to kilometers. This 
use case can also be seen as an extension of the look up 
functionality in terms of semantic similarity. Searching for 
distance would yield both data sets. The extension would now 
be the additional information about the transformation ability 
of units across different measurement systems. 

Semantic reasoning & processing goes a step further, instead 
of concerning with singular concepts and their immediate 
semantic neighborhood, the combination of different concepts 
and a potentially reasoning between them is required for se- 
mantic processing. Consider following example: The previous 
data sets contain next to the distance measurements another 
measurement, a duration. Also for this example, the duration 
was measured in different units of time, e.g., seconds and 
minutes. A scenario for semantic processing would be: A user 
makes a request for Velocity measured in km/h. None of the 
data sets contains this concept explicitly. A semantic reasoning 
must be performed to identify that Velocity can be determined 
by combining Distance and Duration. An application based 
on this premise would not care about the specifics of the 
actual data set, e.g. Miles vs Kilometers, as they can be 
transformed into the required semantics, as explained before. 
This reasoning will be performed by comparing the semantic 
models of different data sets in terms of alignment with 
local (i.e. similarity of the individual models) and global 
similarity (i.e. similarity when considering additional concepts 
and relations of the knowledge graph). 

Semantic presentation The final component of the extraction 
is related to the presentation of the data, i.e., the output 
format and protocol. Making use of a template engine, e.g., 
mustache [17] would allow user specific output formats. 
Applications might require the data to be presented in a 
specific protocol. For example, the result might be needed 
as a HTTP/REST-based service producing content in a JSON 
format, while a process control logic might require a specific 
PLC protocol and format. 

The whole process, i.e., selecting and retrieving the data, 
which was collected by the ingestion agents, performing a 

 

 
 

Fig. 3. The usage cycle in the application layer. 
 
 

semantic homogenization and processing can be implemented 
by a flexible micro service approach. Each of the steps 
are defined as processing task, implementing a processing 
programming interface, defining a semantic function. Such a 
function takes a set of input semantic models and produces 
another semantic model. Each of such tasks needs to be stored 
in a processing task repository. Based on the user request our 
approach will look up required transformations implicitly or 
present an unfulfilled gap in the processing chain. Since we 
follow a bottom up approach, i.e., starting with a clean slate, 
most of these transformations will be unknown at the initial 
setup of the system. The fulfillment of such gaps can be incited 
by a per-use reimbursement. The task repository might contain 
deployable code or references to external resources, which 
provide the execution capabilities. For achievable requests a 
complete pipeline will be defined. The system will create an 
extraction agent, which will take the pipeline, orchestrate it 
and maintain its operation. Scenarios of cloud, edge or mist- 
computing approaches are feasible here, i.e., individual steps 
of the pipeline might run in different locations, for example, 
because of computing or latency requirements. The extraction 
agent also acts as a continuous communication channel for 
the application layer, providing data, notifying about changing 
conditions in the sources systems, adapting to these changes 
or to new requirements of an analytic use case or application. 

 
C. Application Layer 

The tools and methods to search, select and analyze data 
as well as create reports are implemented in the application 
layer. We define an extend data analytics cycle that should 
be supported by tools implemented in the application layer 
to utilize the underlying layers to optimally support the most 
common tasks of a data scientist. The extended cycle is based 
on the analytics cycle presented in Section I and related work 
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presented in Section III and allows close integration with 
presented agents and the overlying business activities. 

Figure 3 gives an overview of the usage cycle in the 
application layer. The first step is the semantic use case 
specific querying of data. In this step, data scientists can view 
all suggested data sets that fit their use case. Corresponding 
queries are processed by the semantic management of the 
data records. Data scientists will then evaluate the list of data 
sets found, select matching sets, and determine their preferred 
target format and structure to configure the extraction agent 
for the selected data set. 

Then, the exploratory analysis begins. The application layer 
provides machine learning algorithm that are used in the 
respective domain and allows their configuration (e.g. DBScan 
for clustering with configurable parameters epsilon and min 
samples). The actual algorithm needs to be implemented in 
a big data processing engine to handle large data sets. The 
extracting agent will provide an endpoint for the engine to 
query all extracted data. 

The application layer also needs to provide tools for vi- 
sualizing the data and the results of the configured anal- 
yses to perform test runs and refine automatic analyses. 
If an analysis provides valuable insights, the analysis and 
the associated visualization can be saved for a report. The 
report configuration can be implemented by presenting slide 
layouts, images from automated analyses and text field to 
add comments. In addition, problems with the data sets or 
requests for supplementary data records can be passed to data 
providers. The extracting agent then distributes the requests 
to the suitable data providers via the semantic layer and data 
providers can react by providing updated data sets through 
semantic ingestion. 

In the final step, the data scientist can set up the automatic 
generation of further reports for the aggregated analyses. This 
allows, for example, to observe effects of initiated process 
improvements or quality parameters to be continuously moni- 
tored. There is also a need for an overview of active automated 
analyses and the status of associated analysis jobs that are 
processed in the big data processing engine. 

V. DISCUSSION 
In Section II we presented several challenges, in this chapter 

we are going to discuss how the presented approach can 
help to solve these problems. Additionally, we will show that 
our approach is compatible with current industrial reference 
guidelines. As noted in Section III, these references are 
effectively interchangeable, we chose the RAMI 4.0 [30] due 
to its importance in the context of Industry 4.0. Therefore, 
the concepts of this paper and the discussion apply to any 
of the presented references. Specifically, we will inspect the 
architectural dimension of the RAMI 4.0. The architectural 
dimension consists of six layers, starting with the physical 
world represented by the Asset layer, the layers on top of it are 
concerned with the digital aspects. Our architecture operates 
from the second layer of the RAMI 4.0 onwards, therefore, 
is located in the digital world. 

 

 
 
 

Fig. 4. Comparison of the presented architecture in relation to the RAMI 4.0 
reference architecture, showing how agents are encapsulated by shells, medi- 
ating based on semantic information modelling. 

 
 

Accessibility: The first challenge we described was re- 
lated to accessibility. This challenge starts to manifest in the 
Asset layer, which contains physical devices, for example a 
manufacturing robot. In our architecture we rely on the exis- 
tence, e.g., a digital interface. These interfaces are, however, 
located on the next layer, Integration, building an immediate 
bridge between physical and digital world. For example, a PLC 
provides a digital interface to the robot. Conceptually we do 
not limit our ingestion agents to operate on this level, i.e, be 
part of the digitization of an analog process. For example, 
consider physical paper reports, our ingestion agent could 
be implemented as a device that scans these reports and, 
therefore, provides a digital interface to the physical entity. 
Most of our ingestion agents are, however, located on the 
next layer, Communication. The Communication layer of the 
RAMI 4.0 describes the problem of technical interoperability, 
e.g., different communication media and protocols. The major 
benefit of our ingestion agents is related to their adaptability 
when dealing with different protocols and interfaces. 

Discoverability: The next problem manifests in the lay- 
ers above the previous ones, i.e. the Information layer. The 
RAMI 4.0 is presenting a concept called ’administrative shell’. 
This shell is conceptually supposed to act as a mediator or 
translator between layers and their respective entities. In our 
architecture, a technical shell and a semantic shell effectively 
surround our ingestion agents. For example, in Figure 4 the 
lower two agents are encapsulated by a lower shell responsible 
for data access, while the upper shell provides the semantics 
needed to describe the accessed data on the Information layer. 
Our approach, specifically, therefore, provides the possibility 
to semantically describe assets and their data in order to find, 
manage and use them based on their semantic. 

Data set Interoperability: The next challenge is related to 
usage of data, it starts to manifest most prominently from the 
Functional layer on wards. In our architecture, we envision the 
extraction agents to act as the bridge between the Information 
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layer and the Functional layer. The information shell contains 
semantic look up and semantic transformation capabilities 
providing consistent semantics, while the functional shell 
allows for application specific (functional) access to assets. 
Implications for the ’Business’ layer are the result of adaptive 
semantic applications described in Section IV-C. In summary, 
our approach is an implementation that is compatible with the 
second to last layer of the RAMI 4.0 reference architecture. 

VI. CONCLUSION 

In this paper we presented how the challenges of data acces- 
sibility, discoverability and data set interoperability manifest 
when implementing a concept like the Reference Architectural 
Model Industry 4.0 (RAMI 4.0). We described a realization of 
the concept based on an implementation using an agent-based 
approach. The approach is centered around a data lake system, 
considering the heterogeneity of industrial data sources and 
assets, by providing mechanisms to semantically enrich these 
sources, describing their contents and formats during the 
ingestion stage. For the utilization of the data, we described 
how the data could be accessed and processed semantically by 
self-adapting extraction agents, providing flexible interfaces for 
data driven applications. 

Lastly, we discussed how the presented approach is con- 
sidering the challenges arising for data driven applications in 
regard to the layers defined by the RAMI 4.0. 

Future work involves the realization of the conceptual 
approaches of processing data semantically and adaptively. 
We plan to evaluate our implementation within real-world 
scenarios. 
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