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Abstract— Currently, fleet management approaches only 

focus on the perspective of the fleet operating company and the 

operators, but not on the perspective of the manufacturer of the 

fleet members. The manufacturer aims at optimizing existing 

fleets and supporting the development process of future fleet 

generations. Furthermore, data-driven models have increasing 

importance in fleet applications. Thus, this paper proposes a 

concept for a holistic fleet management approach for 

manufacturers supporting the development process of future 

fleet generations and services. We build our concept on three 

layers, one for the manufacturer, the fleet operator, and the 

machines respectively. We also discuss interactions and 

information flow in between the layers.  Thus, enabling 

manufacturers to integrate operational data of customers into 

the development process making the products and services more 

customer-oriented. Before launching data-driven fleet services 

extensive training data is required. However, when launching 

new fleets disadvantageously only little data is available. As 

solution, we discuss the transfer of machine learning models in 

between different fleets (inter-fleet transfer learning). This 

enables quickly launching reliable machine models for new fleets 

with a lack of data.  

Index Terms—Fleet management, battery electric vehicles, 

operational data, machine learning, transfer learning 

I. INTRODUCTION 

The transformation of Industry 4.0 and, more generally, of 
the Internet of Things induced by information technology 
networks affects machines, vehicles as a type of machines, and 
the associated vehicle fleets [1]. In vehicles sensors exist at 
least since 1975 [2], but only got slowly connected starting in 
1996 [3]. Still, the sensor data exchange from the vehicle to 
cloud (V2C) will be boosted by the introduction of 5G 
networks starting in the 2020s [4]. Based on this data, the 
operating companies are supported by fleet monitoring and 
fleet management systems often provided by third-parties 
which supervise the administration, use, and maintenance of 
machines [5]. However, these fleet management systems 
currently are focused on the operating companies, but not on 
the machine manufacturers. 

Machine manufacturers aim to realize product cost 
savings, while satisfying quality and customer needs. 
However, customer needs and usage behavior of the machines 
are not always precisely known or accessible to the 
manufacturer via customer surveys. This lack of information 
on the manufacturer side can now be overcome because the 
aforementioned connectivity of machines becomes a standard 
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enabling data transmission from sensors already existing in the 
machines of customer’s fleets to the machine manufacturers. 
Consequently, this paper extends the understanding of fleet 
management focused on operating companies to include the 
perspective of the machine manufacturers. Thus, this paper 
proposes a fleet management approach including the 
perspective of the machine manufacturers. This fleet 
management approach aims at supporting the machine 
manufacturer to optimize existing fleets and support the 
development process of new products and services. 
Simultaneously, the operational objectives of fleet operating 
companies shall be considered by this approach. That is why, 
this approach would be advantageous for the machine 
manufacturer and their customers. Furthermore, a solution for 
quickly launching reliable data-driven models for new fleets 
with a lack of data is proposed by transferring an existing data-
driven model of another fleet to the new fleet. We call this 
transfer of knowledge and models in between different fleets 
inter-fleet transfer learning.  

We present this paper’s fleet management approach and its 
advantages for drivers, fleet operators, and manufacturers at 
the use case of battery electric vehicles (BEV) fleets because 
of their rising importance worldwide [6]. BEV mass 
production as well as the high variety of BEVs coming in the 
near future require low costs and reduced time during 
development. The core component of BEVs is not the 
conventional combustion engine, but the battery which 
requires new surveillance in a new context. Also in the future, 
BEVs will be part of shared mobility concepts [7]. Thus, BEV 
fleet operators are facing operational and maintenance 
challenges as driver-vehicle assignment is dynamic. For these 
reasons, BEV fleets are chosen as use case to present this 
paper’s fleet management approach and its advantages for 
drivers, fleet operators, and manufacturers. Nevertheless, the 
approach is not only designed for BEV or vehicles, but also for 
other machine types. 

First, we contribute a comprehensive, generalist definition 
of the term fleets and an analysis of relevant stakeholder roles 
in the context of fleets. Second, our main contribution is a fleet 
management approach for manufacturers whose benefits and 
practical applications are described. Additionally, we will 
discuss opportunities for transfer learning in the context of 
fleets and our approach. All contributions are shown at the 
example of BEV fleets. 

Fleet Management Approach for Manufacturers displayed at the 

Use Case of Battery Electric Vehicles 

Friedrich von Bülow, Felix Heinrich and Tobias Meisen 
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The remainder of this paper is structured as follows: First, 
the term fleet is defined and fleets’ stakeholder roles are 
introduced in Section II. Section III presents the state of the art 
of current fleet monitoring and fleet management systems. In 
Section IV this paper’s fleet management approach for 
manufacturers is introduced. As one of many possible 
application scenarios, a use case for BEV fleets focused on 
battery digital twins is shown in Section V. Finally, 
possibilities for applying transfer learning in fleets are 
analyzed in Section VI. 

II. FLEETS 

In the following, definitions of the term fleet are critically 
examined and the common perception of fleets’ stakeholders 
is analyzed. 

A. Definition 

Currently, the term fleet has no uniform and widely 
applicable definition. Thus, first several definitions are 
critically examined and summarized. Seguing, a definition 
valid in this paper is presented. 

Cambridge advanced learner's dictionary defines fleet as 
„a number of aircraft, buses, cars, or other vehicles under the 
control of one company or organization“ [8, p. 544]. This 
definition only refers to means of transportation; other 
machines are excluded. Jin et al. [9] widen the definition to “a 
group of machines or assets.” Compared to the Cambridge 
advanced learner's dictionary, using the term group instead of 
number emphasizes the common characteristics among the 
fleet members.  

But these two definitions exclude fleets with fleet members 
under the control of different companies or organizations. For 
example, aircraft of the same type owned by two companies 
would not be part of the same fleet. For the machine owners or 
operating companies this would suffice. But from the 
manufacturer’s perspective it would be meaningful to consider 
these two aircraft as members of one fleet. 

Monnin et al. [10] emphasize that a fleet is an abstraction, 
meaning the fleet members are only grouped virtually. They 
must neither physically be at the same place, nor owned or 
operated by the same person or institution. In addition, the fleet 
size can change over time when new fleet members join and 
old leave the fleet. Kinnunen et al. [11] add the requirement of 
similarity among fleet members to the definition of Monnin et 
al. [10]. Verstraeten and Nowé [12] add that the fleet members 
perform the same task. Leone et al. [13] emphasize that both 
homogeneity and heterogeneity exist within a fleet. However, 
the term products they use is too broad for the technical context 
of this paper. Michau et al. [14] state that fleet members are 
operated differently. Though, making this an obligatory 
criterion means that two equally operated fleet members 
cannot be part of one fleet. Hence, this seems like an 
unnecessary restriction.  

From these definitions, we derive our definition, that is 
widely applicable to different scenarios, perspectives and 
machines, like chemical plants, vehicles, trains, aircraft, 
windmills, and cogeneration units:  

A fleet is a group of machines, that is homogenous with 
respect to their function, clustered by certain criteria, which 

may be technical, operational or contextual. Possible criteria 
are the ownership, the geophysical location or region of 
operation, the type of user or operator, the model type or 
generation of the fleet members, as well as the ageing or 
degradation state of the fleet members. A fleet is only an 
abstraction and may be divided into sub fleets, mathematically 
spoken subsets, so that a fleet hierarchy is created. Fleet 
members can also be part of several fleets in an intersection or 
union. Usually, some level of heterogeneity among the fleet 
members exists regarding certain characteristics like the 
operational conditions.  

B. Stakeholder Roles 

Until now, few authors have analyzed fleets’ stakeholder 
roles involved in operation and manufacturing of fleets. 
However, this is essential for a holistic fleet management 
approach.  

Michau et al. [14] consider fleets from the perspective of 
the manufacturer and operator. However, the operator role 
needs to be refined further. It may refer to one or several 
persons operating the machine, like the driver of a vehicle or 
an operator team of a chemical plant, but could also refer to 
the institutional fleet operator like a company, which usually 
will also own the fleet. Hence, when operating a fleet, different 
stakeholder roles can be involved: These are the owner, the 
fleet manager, the operators, like machine or plant operators, 
workers or drivers, and maintenance crews. For fleets these 
roles are usually neither filled by the same person or team nor 
are these necessarily part of the same organization.  

In the following, possible tasks of each role are described. 
The owner, usually an institution, is responsible on the 
strategical level. This includes deciding on the fleet’s task, the 
fleet member selection, and the fleet size. The fleet manager 
takes responsibility for the operational daily business. She 
manages accidents, service stops, schedules shift plans, and 
monitors the overall fleet performance and usage. In the case 
of BEV fleets, the fleet manager also supervises the charging 
management, e.g., by selected preferred charging profiles. The 
operator is working at, with or on the fleet members on the 
operational level and is responsible for a fleet member’s usage. 
Examples are a vehicle driver and a team operating a steam 
cracker in the control room supported by a process control 
system.  

These roles might not be separated or existing for all types 
of fleets. For example, on the one hand, a fleet of windmills is 
operated fully automatically and won’t need human operators, 
but will still be monitored remotely by a System Control And 
Data Acquisition System (SCADA-System). On the other 
hand, a fleet constituted of all cars of a certain vehicle model 
type registered in Germany currently neither has an 
operational fleet manager nor a joint owner. As each driver or 
a group of drivers owns one vehicle, no fleet manager as 
intermediate exists. Contrarily to that, in the case of a non-
autonomous ride hailing vehicle fleet, all roles of owner, fleet 
manager, and driver exist non-separated. 

III. STATE OF THE ART: FLEET MANAGEMENT OF VEHICLES 

Currently, there exists a wide range of fleet management 
systems supporting the aforementioned roles of operators and 
fleet managers. These systems are often offered by 
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manufacturers or third-party companies for different types of 
machines like floor care equipment [15], intralogistics 
solutions [16] and especially for vehicle fleets of company 
cars, leasing cars, and logistics fleets [17, 18]. Simple 
telematics systems provide fleet monitoring for fleet 
managers, e.g., regarding fuel and energy consumption, fleet 
position, and mileage. These monitoring systems only transfer 
data, aggregate it, and display it to the fleet manager [19–21]. 

More advanced fleet management systems support fleet 
managers and operators by integrating operationally useful 
components like dynamic vehicle routing, maintenance 
management, and cost management [5, 22, 23]. Especially for 
BEV fleets, charging management approaches have been 
proposed [24, 25]. Not only for vehicle fleets, but also for other 
fleets predictive maintenance approaches have been 
considered [10, 26, 27]. However, these approaches focus only 
on a single fleet. Transfers between several different fleets are 
not considered, so called inter-fleet transfer. To the best of our 
knowledge, no fleet management approach integrates the 
manufacturer’s perspective to support the development 
process at the moment. 

For the chosen use case of BEVs, manufacturers only have 
limited data of new vehicles e.g., from test vehicles and 
endurance testing. Albeit, especially the latter is immensely 
expensive. Additionally, both only supply a limited data base 
regarding quantity and variety. They are usually executed by a 
group of test drivers and do not reflect operational usage of 
end customers. Thus, a holistic fleet management approach 
from the manufacturer’s perspective will support and reduce 
costs of the development process. 

IV. FLEET MANAGEMENT APPROACH FOR 

MANUFACTURERS 

 Due to the limitations of state-of-the-art fleet management 
system for manufacturers, we propose a fleet management 
approach for manufacturers. First the general layer structure is 
introduced following a detailed description of the layers and 
the information flow in between the layers in the next three 
Sections IV-II.AA to IV-C. In Section IV-D, possibilities for  
data storage and machine learning model training are 
discussed. 

This paper’s approach has a structure of three layers which 
is depicted in Fig. 1: The machine, fleet operator, and 
manufacturer layer. Like the automation pyramid [28, 29], the 
layer structure reduces complexity. The automation pyramid 
consists of four layers: Enterprise layer, plant layer, process 
layer, and field layer. Its objective is the production control of 
plants or machines [28, 29]. Even though this paper’s approach 
has a different objective, it is related to the automation 
pyramid. This paper’s approach puts another layer on top of 
the automation pyramid: The manufacturer layer. The 
automation pyramid’s enterprise layer is comparable to the 
fleet operator layer as it refers to the (fleet) operating 
enterprise. Additionally, plant, process, and field layer are 
merged into the machine layer because their exact structure is 
less relevant for the fleet management. 

On the bottom machine layer of this approach, each fleet is 
constituted by grouping machines regarding certain criteria 
following the chosen definition in Section II-A. Thus, single 
machines are viewed as fleet members. Each machine is 
accompanied by an individual digital twin. The digital twin 
mirrors the life of its corresponding physical twin that can be 
used for various purposes [30]. The objective of this layer is to 
support the single machine’s operator or operating teams, so it 
is machine-focused. 

On the middle fleet operator layer, each fleet is supervised 
by the roles of technical monitoring and fleet manager. The 
technical monitoring focuses on the fleet member’s health and 
load from a technical point of view. The fleet manager takes 
responsibility for the operational daily business like described 
in Section II-B. Depending on the technical expertise and need 
of the fleet manager, the roles of technical monitoring and fleet 
manager can be executed jointly or separately, either by a 
person or a team. At all events, for larger fleets that are not 
operated by a single person or institution technical monitoring 
and fleet manager can be roles allocated at the manufacturer, 
e.g., in the after sales or service department. The objective of 
this layer is to support fleet-related activities of the fleet 
operator, so it is focused on fleet operators. 

On the top manufacturer layer, all technical monitoring and 
fleet managers from the fleet operator layer are connected to 
the manufacturer’s development environment. The objective 

Figure 1. Fleet management approach for manufacturers (Coarse depiction) 
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of this layer is to support the manufacturer of the fleet 
members independently of the composition of the fleets, so it 
is manufacturer-focused. 

In contrast to the middle layer, which is centralized in the 
cloud, the machine layer follows the paradigm of edge 
computing as it enables moving computation and data storage 
away from a central cloud [31]. This division is motivated by 
cost, security, connectivity, and bandwidth limitations. Data 
and computations like model execution that are necessary for 
the reliable and secure operation of the fleet members stay on 
the machine. However, additional digital services provided to 
the fleet’s stakeholders and model training are executed in the 
cloud. The manufacturer layer may be realized independently 
as the manufacturer desires. 

When extending this approach from a single to multiple 
manufacturers of the same machine type, interchangeable 
layers with standardized interfaces for information flow in 
between the layer become an option. Information flow in 
between the layers will be limited by data access directives of 
the involved manufacturers. Consequently, fleet data is only 
shared with the manufacturer of the fleet members, not with 
other manufacturers. Also, of all layers only the fleet operator 
layer can realistically be exchanged to limit external access of 
third-party manufacturers to critical functions.  

Fig. 2 depicts the detailed fleet management approach for 
manufacturers with the subcomponents of each layer as well 
as the information flow in between the layer. These are 
described in the Sections IV-A to IV-C and shown at the 
example of BEV fleets.  

A. Machine Layer 

On the machine layer, each fleet member’s digital twin is 
composed of individual information regarding the components 
of interest. Depending on the complexity of the ageing causes 
of the component either component statistics are recorded or 

intelligent on-board models are used. Component statistics 
encode how the components have been stressed during usage. 
For BEVs this could include simple metrics as mileage or the 
number of charging cycles. Component statistics may suffice 
for operating materials, tire wear and components of the drive 
train.  

More complex ageing mechanisms can be captured by 
intelligent on-board models. For BEV fleets such complex 
ageing mechanisms exist in the battery [32]. Intelligent on-
board models may be physical, hybrid or machine learning 
models. However, physical models require complex model 
development for each new model. Thus, hybrid and machine 
learning models are beneficial. Though, they are dependent on 
data gathering from fleet usage. This data may serve for 
validation of physical models.  

The definition and adjustment of the component statistics 
and intelligent on-board models is done by the manufacturer 
from the highest layer. This enables interoperability and 
comparability of the digital vehicle twins. Furthermore, the 
task of designing digital twins would be too complex and out 
of scope for fleet operators. 

B. Fleet Operator Layer 

On the middle fleet operator layer, the roles of technical 
monitoring and fleet managers are supported by the 
technologies of intelligent data aggregation, fleet analysis 
toolbox, predictive maintenance and data driven optimization 
methods. Access to these functions depends on the technical 
expertise and need of the fleet manager.  

Like in state-of-the-art fleet management systems, the fleet 
manager is supported with a fleet analysis toolbox that 
provides operationally relevant information like current states 
of the fleet’s vehicles and their components. In the case of 
BEVs this would be e.g., the State of Charge (SOC) and State 
of Health (SOH). For fleet analysis, the manufacturer can 

Figure 2. Fleet management approach for manufacturers (Detailed depiction) 
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provide services to the fleet operator over the entire product 
life cycle like residual value estimation. Also interfaces to 
third-party providers are possible on the fleet operator layer. 

Furthermore, the data from the component statistics and 
the intelligent on-board models gets aggregated component-
wise, for each fleet member, and the entire fleet in the fleet 
data storage for displaying in the fleet analysis toolbox. This 
data is relevant for the fleet manager, but also for the technical 
monitoring of the fleet. This way relatively fast ageing 
components within the fleet can be identified, analyzed, and 
potentially maintained. 

The fleet manager has the capability to customize the 
control and operational parameters of the fleet members 
related to the operational strategy. Hence, the fleet manager 
can implement measures to extend the lifetime, minimize 
operational costs, and maximize the fleets performance or 
utilization. Before updating customized control and 
operational parameters to the fleet, the technical monitoring 
and the fleet manager are supported by data driven 
optimization models. These enable simulations to identify the 
desired impact of the chosen control and operational 
parameters beforehand. For BEV fleets customized control 
and operational parameters could specify the configuration of 
the low power mode at low SOCs. The same applies to the 
charging management with preferred charging rates and 
configurations related to ageing accelerating operational states 
and events. 

On the middle fleet operator layer, information exchange 
in between the different technical monitoring and fleet 
managers across fleets is possible. Section VI elaborates 
further on the motivation and implementation of this. 

C. Manufacturer Layer 

On the top manufacturer layer, fleet data stored for each 
fleet on the fleet operator layer is aggregated fleet-
comprehensively in a global data storage. 

This global data storage may serve as early input to the 
development process of new products and services because it 
contains information of the real usage behavior of several 
fleets. Currently, such information may only be acquired 
qualitatively by customer survey indicating customers’ needs, 
but not the customers’ real usage of the machines. Especially, 
data of overloading and common load scenarios is interesting 
for the development to specify new machine models. 
Consequently, the product requirements document (PRD) of 
future components will be based on actual customer demand. 
This also applies to the interaction of the components as 
complete product. Based on the cross-fleet historic data 
storage, the manufacturer can develop customer-demand 
orientated services for hardware and software components.  

Additionally, development engineers can interact with the 
fleets directly to roll out fleet-wide software updates. An 
example are model adjustments of the underlying structures of 
the fleet members’ digital twins. This improves the 
information basis for fleet managers provided by the digital 
twins. Development engineers can also prototype functions on 
a sub fleet to get fast customer feedback [33]. Additionally, 
shadowing testing [34] which is known in the software domain 
can be applied on the fleet when connected to the development 

department. This is especially relevant for software functions 
and digital services provided to customers, drivers, fleet 
managers, and fleet operators. 

2nd life applications of fleet members or their components 
usually need to be scheduled to meet supply and demand 
timely. This applies for example to BEV batteries transferred 
to a 2nd life applications for stationary energy storage. Also, 
components with high value for recycling may be observed 
closely at their end of life (EOL) to improve scheduling the 
recycling plant. Both use cases are interesting for the business 
model of Batteries as a Service (BaaS) [35]. 

D. Data Storage and Machine Learning Model Training 

The question of the location of data storage and machine 
learning model training depends on multiple factors like the 
origin and quantity of the training data and the computational 
power needed for training. For example, for minimizing the 
data transfer the intelligent on-board models could be trained 
on the edge device where the data is located. Contrarily, fleet-
comprehensive models that require training data of all fleet 
members of a fleet can be trained either centralized in the cloud 
or federated. The latter is advantageous, when the data 
interface between the fleet members and the cloud causes 
privacy issues or suffer from unreliable and slow network 
connections. Privacy issues may occur when data regarding 
the detailed usage of the fleet members is transmitted. For 
vehicle fleets, this includes information like the location, 
driven routes, and periods of use. To overcome these issues 
federated learning may be applied in a fleet context. Federated 
learning is a machine learning setting where many clients (e.g. 
the fleet members) collaboratively train a single model under 
the control of a central server, while the training data stays 
decentralized with the clients. Each client independently 
computes a parameter update to the current model using its 
local data and only communicates the parameter updates to the 
central sever, where all updates are aggregated to a new global 
model [36, 37]. 

In contrast to federated learning, distributed learning 
assumes the availability of all training samples in a centralized 
location. From there data can be shuffled and distributed over 
computation nodes [38]. In this case, privacy issues could be 
tackled by anonymizing the transmitted data. 

V. USE CASE OF BATTERY ELECTRIC VEHICLE FLEETS 

In 2020 the price of the battery of an BEV accounted for 
more than 30 % of the vehicle’s production cost and is 
therefore the most valuable component inside an BEV [39]. 
One major cost driver during the development process is 
battery testing. To guarantee the longevity of battery cells, 
endurance testing consumes time and resources, but is mostly 
restricted to limited testing facilities.  

The same limitations are applicable to the management of 
customers’ BEV fleets. To monitor battery aging due to 
vehicle usage, frequent workshop measurements of the 
battery’s SOH would be necessary. This battery knowledge 
would enable optimization strategies, predictive maintenance, 
and support of future development to improve battery systems. 
Unfortunately, this procedure is unfeasible for workshop 
facilities and customers. 
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In order to make battery testing scalable, to lower the cost, 
and to reduce real battery testing efficiently, simulations with 
digital battery twins show great potential [32, 40, 41]. Heinrich 
et. al [42] investigated battery models based on real in-vehicle 
driving data only. Their battery model was used to estimate the 
battery SOH by performing standard laboratory battery tests 
virtually with almost experimental accuracy.  

Such models can be trained inside the vehicle during 
operation (edge computing). Hence, the whole battery 
functionality can be compressed to a minimum amount of 
model parameters. This compression enables an efficient and 
scalable data transmission between single vehicles and the 
fleet management. 

The fleet operator can thereby analyze each member of the 
fleet individually (cloud computing). Comprising the 
knowledge of all operated fleets, optimization strategies, 
predictive maintenance, and adjustments for the battery 
operational parameters can be derived. This procedure benefits 
the customer’s performance and can be further used to 
improve development of products and services. 

Understanding the real utilization of vehicle components 
by a variety of different customers, the development of new 
model generations can be optimized in terms of requirement 
specifications, prevention of over-engineering, and new 
exploitation concepts. 

VI. TRANSFER LEARNING FOR FLEETS 

Fleets are heterogeneous which means that certain 
characteristics are over or under-represented in different fleets. 
Heterogeneity may be caused by different components built in 
the fleet members, different model generations or different 
operational load of the fleet members. This heterogeneity 
motivates transfer learning in between different fleets, so 
called inter-fleet learning.  

Transfer learning aims to improve learning a new task by 
transferring knowledge from a related task that has already 

 
1 Exemplary ID.3 model specification from [45].  

been learned [43]. The related task is called source task, while 
the new task is also referred to as target task. The used data is 
from the source domain respectively the target domain which 
in this case are different fleets, the source and target fleet 
respectively. In other words, in this paper transfer learning is 
regarded as inter-fleet learning, not as intra-fleet learning like 
in [12, 44]. 

When launching a new fleet, reliable machine learning 
models for the new fleet are needed very quickly to support 
established services. Otherwise the models are only optional. 
Nevertheless, the available amount of data for model training 
is limited in the initial phase. Extensive data gathering as 
solution is often expensive and difficult. Another solution is to 
transfer an established model of another fleet to the new fleet 
(inter-fleet transfer learning), as soon as a small amount of data 
of the new fleet has been gathered. Due to security and privacy, 
in most cases the manufacturer and not fleet operators will 
provide inter-fleet transfer learning. 

The lack of data of the target fleet which makes transfer 
learning beneficial may not only occur because of the young 
age of the target fleet. Transfer learning will also be promising, 
if the target fleet is small or has a special usage behavior. Five 
cases of inter-fleet transfer learning are presented for a source 
and target fleet at exemplary vehicle fleets in Table I1 (In the 
first case, the target fleet is young either because a model 
update or refurbishment has been rolled out (1a), a completely 
new model type has been released (1b) or the target fleet’s 
members are either not frequently or not intensively used (1c). 
In the second case, the target fleet and source fleet are of the 
same model type and generation but have different 
configurations of certain components from the beginning of 
their life (BOL) (2a) or after replacement of certain 
components due to maintenance at a service stop (2b). This 
may require different, but similar models. In the third case (3), 
the target fleet and source fleet are of the same model type and 
generation but have a significantly different load due to usage.  

Not only transfer learning between machine learning 
models can be applied but also causal connections and 
analytical results can be transferred. For example, if an 
operational area has been identified as critical regarding 
battery ageing in one BEV fleet, this knowledge may be 
transferred to another BEV fleet.  

Sticking to the use case of BEV fleets, the application of 
transfer learning for battery SOH estimation and forecasting 
can be beneficial, as there are common characteristics of 
different battery systems, but specific usage and ageing 
inducing causes are different for each battery type assembled 
in the fleet members. 

VII. CONCLUSION 

Existing fleet management approaches focus on the 
perspective of the fleet operating company. These fleet 
management approaches do not consider the perspective of the 
machine manufacturer or include several fleets. This paper 
proposed a concept idea of a holistic fleet management 
approach for manufacturers with inter-fleet transfer learning. 
The approach is based on the opportunities of the connectivity 
between single machines, whole fleets, across different fleets, 

TABLE I 
POSSIBLE CASES OF INTER-FLEET TRANSFER LEARNING AT EXEMPLARY 

VEHICLE FLEETS 

Case of inter-fleet 

transfer learning 
Source fleet Target fleet 

1) Target fleet young 

1a) Model update 

or refurbishment 
VW Golf 7 VW Golf 8 

1b) New model VW ID.3 VW ID.4 

1c) Target fleet not 

used frequently or 
intensively 

Used by sales 

representatives 

Used for weekend 

trips only or mainly 

2) Same model, but different configuration 

2a) from begin of 

life (BOL) 

VW ID.3 Pro (58 kWh 
net battery, 107 kW 

motor power) 

VW ID.3 Pro S 
(77 kWh net battery, 

150 kW motor power.)  

2b) after service 
stop 

VW ID.3 Pro (no 

battery modules 

exchanged) 

VW ID.3 Pro (𝑛 

battery modules 
exchanged) 

3) Same model, but special load of source or target fleet 

VW Crafter average load 
Trip length < 200 m,  
pauses > 1 h 
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and the manufacturer. The approach and its information flow 
have been showed at the example of BEV fleets. Using this 
approach, manufacturers can access real operational data of 
their customer’s fleets and integrate it into their development 
processes. Also, possible cases of transfer learning across 
different fleets implementable with this approach have been 
presented. This approach can be applied to fleets of different 
machine types, like for example vehicles, trains, aircraft, and 
windmills. However, it requires large fleets and might not be 
worth the investment, if fleet members have low capital costs, 
due to two reasons: Firstly, a sufficiently large and variable 
data basis is necessary for a manufacturer to benefit from this 
fleet management approach. Secondly, investments for 
infrastructure and operational realization of this fleet 
management approach will be significant so that economics of 
scale cannot be realized easily for small fleets. Future work 
should consider the implementation and validation of this 
theoretical concept. This applies especially to the suggested 
interfaces in between the layers. Related to this, the 
possibilities of interchangeable and connectable layers from 
different manufacturers can be discussed further. 

DISCLAIMER 

The results, opinions, and conclusions expressed in this 
publication are not necessarily those of Volkswagen 
Aktiengesellschaft.  

This is an extended version of: F. von Bülow, F. Heinrich, 
and T. Meisen, “A new perspective for manufacturers: Cloud-
based utilization of operational fleet data,” in VDI-Report, 
20th International Congress Electronics In Vehicles (ELIV), 
2021. 
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