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Abstract 

Currently, several methods for battery state of health (SOH) prediction exist which are applicable to 

battery electric vehicles (BEV). However, only few research has been conducted on SOH forecasting 

based on features that encode causes for battery ageing applicable in real world applications. This paper 

proposes a machine learning method for SOH forecasting applicable for BEV fleet managers and battery 

designers in real world applications. As model inputs, we use the battery’s operation time within certain 

operation ranges defined by combinations of the battery signals current, state of charge (SOC) and 

temperature. Different variants of this temporal aggregation of the battery operation time and of the 

operation ranges of the battery signals are examined. Our findings state that combining different cycle 

window widths 𝑤𝑤𝑤𝑤 to one training data set improves the generalization of the model. Also, we find that 

the fineness of the operational ranges of the signals does not limit the model’s performance if 𝑤𝑤𝑤𝑤 is 

larger than 100 cycles or different 𝑤𝑤𝑤𝑤 are combined. 
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1 Introduction 
With the transition to electric mobility the interest for the battery as core component of every battery 

electric vehicle (BEV) and its state of health (SOH) rises. The SOH of batteries is highly dependent on 
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the individual battery’s usage, stress and environmental conditions. Much research has been conducted 

to estimate the current SOH, e.g. based on current battery behavior [1–5]. Other researchers have 

designed experiments to examine battery ageing, i.e. SOH degradation, under laboratory conditions to 

identify operational conditions which induce accelerated battery ageing. However, only little research 

has been done on SOH forecasting based on the battery usage applicable in real-world scenarios [6]. 

We observe that battery data from laboratory operation like [7–10] usually differs significantly from 

battery data from real-world operation of BEVs. Differences are the duration of hold mode with zero 

current, the variation of charging and discharging currents as well as the operation range of the state of 

charge (∆𝑆𝑆𝑆𝑆𝐶𝐶 ). Especially, due to regenerative braking in automotive applications charging and 

discharging mode alternate frequently. Many models using such laboratory battery data assume the 

same load during the whole battery life. However, batteries cycled in real-world operation, for example 

in automotive applications, may have a varying load over the life of the battery.  

We perceive battery ageing as a state change from a current SOH to a future SOH due to ageing causes, 

so called stressor types, like those mentioned in section 2.1. We define SOH forecasting as a regression 

task to predict the future SOH from any input features that encode the battery operational load during a 

period of time until the future point in time. We differentiate SOH forecasting from the so-called SOH 

estimation in the literature. We perceive SOH estimation as the determination of the SOH from data at 

a certain point in time like a single charging cycle. Thus, compared to SOH forecasting, the SOH 

estimation does not model a change in state, but only a determination of state. 

Nevertheless, a model for SOH forecasting becomes necessary in several application areas. For example, 

cloud-based fleet services depend on suitable SOH forecasting models. Assuming a certain usage 

scenario of a BEV fleet, the fleet manager can forecast the battery SOH of the fleet’s vehicles and 

knows, when a vehicle replacement due to battery deterioration will be required. Furthermore, battery 

designers can conduct virtual battery ageing experiments by adapting the usage scenario data. As an 

example, the maximum discharge current can be limited at certain temperatures. After adapting the 

usage scenario data, the model will output its effect on the SOH. This enables a prescriptive analysis 

and recommendations for an operational strategy for BEV fleets including fleet charging management. 
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However, such new service concepts raise new challenges. When launching a new battery type with e.g. 

a new cell chemistry, a reliable model for battery ageing suitable for the new battery type is required 

quickly to support established services. Nevertheless, the available amount of training data of a new

battery type is limited in the initial phase. Extensive data generation as solution is expensive and

difficult as battery ageing is a lengthy process. Another solution is to transfer an established model for

battery ageing of another battery type to the new battery type, as soon as a small amount of data of the

new battery type has been gathered [11,12]. This method is called transfer learning and has been

successfully applied in different domains, like computer vision [13]. The application of transfer learning 

for battery SOH forecasting models is a crucial part, as there are differences in battery systems like the

nominal capacity, the cell anode and cathode materials as well as the applied load due to usage. However, 

the general electrochemical behavior of lithium-ion batteries is a major common characteristic which 

provides an excellent starting point for transfer learning. 

Inspired by the applicability for BEV fleet managers and battery designers we define the following 

requirements of a model for SOH forecasting: First, data transmission cost from BEVs to e.g. a cloud

shall be minimal so that the model can be scaled cost-efficiently. Second, when applying the model in

production for SOH forecasting, a human would need to choose the input data as there is no data from

the future battery load available in the present. Thus, the model’s inputs need to be producible and

interpretable by humans so that what-if-simulations can be run. Third, the model shall be applicable in

real-world scenarios and, thus, be able to capture the higher variability of real-world battery operation 

compared to laboratory operation. Forth, the required amount of training data shall be minimal at least

once an initial model has been trained so that it can be transferred easily to new batteries. Fifth, the

model shall be applicable for 2nd life applications of batteries, i.e. below an SOH of 80%.

This paper addresses the aforementioned challenges and contributes a method for SOH forecasting 

fulfilling the defined requirements. The methods objective is to estimate the future SOH caused by 

battery ageing encoded in the stressor data. Further, we contribute an analysis of the temporal 

aggregation of the battery operation time and of the operation ranges of the battery signals to suitable 

stressor data before the transmission e.g. into a central cloud. This paper contributes a proof of 
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suitability of the proposed ML model for this problem, but an evaluation of transfer learning on the 

proposed model is out of scope for this paper. 

The remainder of this paper is structured as follows: First, the foundations of battery ageing, the state 

of the art of battery SOH forecasting and remaining useful life (RUL) are described in section 2. 

Afterwards, in section 3, the method for SOH forecasting including the stressor extraction, the machine 

learning regression model and the model application is explained. The used data basis is presented in 

section 4. Subsequent, we present and discuss our results in section 5. Section 6 concludes our work. 

2 State of the Art 
2.1 Foundations of Battery Ageing 
The SOH is commonly described by internal resistance (𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅) and remaining capacity (𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶) [14,15]. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅 is the relative change of internal ohmic resistance compared to a new battery. 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 denotes the

remaining maximum capacity 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) relative to the initial maximum capacity of a new battery, also

called nominal capacity 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 [16]. 

𝑆𝑆𝑆𝑆𝐻𝐻(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡) =
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)
𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛

(1) 

In the following, we focus on the 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 , for simplicity referred to as SOH. Battery ageing can be

structured into two causes: calendar ageing and cyclic ageing. Calendar ageing is associated with the

storage of batteries, meaning no charging or discharging is applied. Hence, it is also called passive

ageing. Cyclic aging corresponds to the impact of battery usage on the SOH, i.e. ageing due to charging

and discharging [17]. 

High temperatures (T) and high state of charges (SOC) are causing fast battery calendar and cyclic 

ageing [18]. For example, a high SOC over 80% accelerates solid electrolyte interphase (SEI) growth 

[4]. Other stressors accelerating battery ageing are high charge and discharge C-rates0F

1 as well as a high 

∆𝑆𝑆𝑆𝑆𝑆𝑆 [17,19]. Even though battery stressors are qualitatively known as displayed in Table 1, their 

single and joint impact on the battery’s SOH has not been modeled quantitatively yet. 

1 C-rate in [1/h]=[A/Ah] is the current relative to the nominal capacity 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛. 
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Table 1: Aging mechanisms and their accelerating stressors [20,21] 

Battery component Aging Mechanisms Accelerated by 

Anode 

Lithium plating ↑ C-rate, ↓ T, ↑ SOC 
Electrolyte decomposition ↑ T, ↑ SOC 
SEI formation ↑ & ↓ SOC 
SEI decomposition ↑ C-rate, ↓ T 
SEI growth ↑ T, ↑ SOC 
Structural disordering ↑ C-rate, ↑ & ↓ SOC 
Corrosion and loss of electrical contact ↓ SOC 

Separator Blocked pores (Separator and Electrodes) ↑ T, ↑ SOC 

Cathode 

Dissolving of transition metals ↑ T, 
Binder decomposition ↑ T, ↑ SOC 
Structural disordering ↑ C-rate, ↑ T 
Corrosion and loss of electrical contact ↑ C-rate, ↑ T, ↑ SOC 

 

2.2 Battery State of Health Forecasting 
Few research has been conducted for the forecast of the SOH of lithium-ion batteries. Richardson et al. 

[6] presented a Gaussian process regression (GPR) model which forecasts the SOH only based on the 

charging cycle number of the battery as input data. As the authors themselves note, past data up to a 

given cycle does not have strong influence on distant future cycles because the model assumes no 

change in the usage of the battery. Furthermore, the influence of calendar ageing on battery ageing is 

neglected. However, in real-world operation of BEV fleets these are unrealistic assumptions (Req. 3). 

In a later work, Richardson et al. [22] propose another GPR model this time for capacity fade (∆𝑄𝑄) 

prediction. As inputs, they use the current capacity and the histogram-like time elapsed under certain 

operational conditions. The operational conditions are certain ranges of temperature and current. For 

example, the sum of all time spent in the range of 5°C to 40°C is a model input. However, the model 

does not distinguish between different charging currents as these are all considered in the current range 

below 2 A. Furthermore, no information on SOC and ∆𝑆𝑆𝑆𝑆𝑆𝑆 is considered as model input. In summary, 

like [6] the applicability of this model in real-world operation of BEV fleets is limited (Req. 3). 

Lucu et al. [23] propose another Gaussian Process ageing model for capacity fade (∆𝑄𝑄) prediction. They 

use ∆Ah-throughput, reciprocal temperature, depth of discharge (DOD), average SOC, charging and 

discharging C-rate as input features. Their usage of DOD, charging and discharging C-rate as input 

features supports the analysis findings of the last two paragraphs. However, they do not combine battery 

signals relevant for ageing like SOC, current and temperature as input features. Additionally, they only 

model the capacity loss in the second ageing phase of linear degradation. However, modelling the SOH 
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below 80% is interesting for 2nd life applications like stationary energy storage for grid stabilization 

whose performance requirements need to be satisfied (Req. 5) [24,25]. 

Existing approaches for SOH estimation [1–3,26–28] require data of the future charging cycles for 

prediction like the charging curve of current, voltage and temperature to estimate the SOH. These time 

series change when the battery ages, but are hard to interpret for humans. This means a user of the 

model, like a fleet manager, cannot derivate changes of the charging curve from an imagined usage 

scenario of her BEV fleet (Req. 2). For example, this applies to the Long short-term memory (LSTM) 

model for SOH estimation proposed by Song et al. [27] which uses features obtained from the voltage 

charging curve as inputs. Consequently, it will not be possible to apply the model for SOH forecasting. 

Overall, this makes the development of a new approach for real-world applications necessary that 

considers hold periods, different ∆𝑆𝑆𝑆𝑆𝑆𝑆s, charging and discharging C-rates (Req. 3) and has model 

inputs which are producible and interpretable by humans (Req. 2). 

2.3 Battery Remaining Useful Life Prediction 
A similar task to the SOH forecasting is the prediction of the RUL. The RUL is defined as the number 

of charge-discharge cycles until a specific battery SOH is reached [29]. Usually for BEV batteries a 

SOH of 80% is required which is defined as the EOL of the first life (𝐸𝐸𝐸𝐸𝐸𝐸80) [24]. The RUL usually 

refers to full equivalent cycles, but real-world operational battery cycles have different ∆𝑆𝑆𝑆𝑆𝑆𝑆 (Req. 3). 

In the operation of BEVs, the RUL can therefore only serve as an indicator for the number of potentially 

non-full cycles until EOL.  

Furthermore, a RUL prediction model only predict the number of cycles to a single SOH like 𝐸𝐸𝐸𝐸𝐸𝐸80, 

so several RUL prediction models would be required depending on the SOH of interest. However, a 

single SOH model can forecast a range of SOHs. This is relevant for BEV fleet operation and for 

batteries in the 2nd life application which usually have a lower SOH (Req. 3 & 5). The inputs of the 

SOH forecasting models contain direct or indirect information on the number of cycles operated. Under 

this assumption, the inputs can be adapted until e.g. 𝐸𝐸𝐸𝐸𝐸𝐸80 is reached. Alternatively, the predicted SOH 

can be compared with the EOL threshold like 80%. From this point of view, SOH prediction can be 

seen as a generalization of RUL prediction.  



Prep
rin

t 

Auth
ors

' V
ers

ion

Severson et al. [9] designed a feature-based regression model for RUL prediction using data from the 

first 100 cycles with a test root mean squared error (RMSE) of 9.1%. Their model uses the initial 

discharge capacity, charge time, cell can temperature and features derived from the discharge voltage 

curve as inputs. However, the features like those in the model of Song et al. [27] are not human-

interpretable (Req. 2). Furthermore, the model assumes the same load during the whole battery life as 

it predicts the RUL only based on the first 100 cycles (Req. 3).  

Patil et al. [30] use features of the discharging curve to predict the RUL. These features are expressing 

the fluctuation, the concavity/convexity, skewness and kurtosis of the signals voltage, temperature and 

current. However, as the authors themselves note, their model has only been investigated for constant 

load profiles, but load profiles in real-world application are non-constant (Req. 3). 

3 Method 
As mentioned in section 2.1, battery ageing is perceived as a state change from a current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) to a 

future 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2) due to ageing causes. The ageing causes are encoded in the battery operational data 

which consists of multidimensional time series signals of temperature, current and SOC. The United 

States Advanced Battery Consortium set the development objective for battery life of 15 years and 1000 

cycles [31]. This means in real-world operation batteries age slowly so the relevant time series contain 

years of operational data at a sample rate in the range of seconds or milliseconds. As done by [22,23], 

data compression and feature extraction is necessary before the data is transmitted and used as model 

input (Req. 1 in section 1). For this task we propose the stressor extraction as first part of our SOH 

forecasting method in Figure 1. Additionally, the resulting stressor data is producible and interpretable 

by humans (Req. 2). 

As second method part, the stressor data is input of a machine learning (ML) model, that outputs the 

state change ∆𝑆𝑆𝑆𝑆𝑆𝑆 from a current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) to a future 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2). The SOH values are assumed to be 

known for the training data. The two parts of the proposed SOH forecasting method are explained in 

detailed: The stressor extraction in section 3.1 and the ML model in section 3.2. 
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Figure 1: Model structure – stressor extraction (1) and ML model (2) 

3.1 Stressor Extraction 
In the stressor extraction, battery operational data is used to extract data of battery stressor types which 

are known to induce battery aging. A battery stressor type is defined by one or several relevant battery 

signals each limited by an interval (histogram-like binning). E.g., one stressor type is the battery 

operation within a C-rate of 3-4C and a temperature of 31-32°C as depicted in the plot in Figure 2. The 

corresponding stressor value is defined by Eq. (2) as time elapsed when the battery is operated within 

operational conditions of the stressor type. This corresponds to a two-dimensional extraction of [22]. 

 
Figure 2: Exemplary stressor extraction from time series data with c-rate and temperature to form a stressor table which 

serves as model input feature. Signal interval widths is medium according to Table 3. “I & T” according to Table 4.1F

2 

𝑡𝑡 3<C≤4,
31<𝑇𝑇≤32

= ∫ 𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

 with 𝑓𝑓(𝜏𝜏) = �1,
{3 < 𝐶𝐶-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜏𝜏) ≤ 4} ∩

{31 < 𝑇𝑇(𝜏𝜏) ≤ 32}

0, else

 (2) 

When having several battery stressors, stressor tables like in Figure 2 can be formed, capturing all 

relevant battery stressor types. Figure 2 indicates that the battery has been operated 0.1036 h in the 

operational range during the depicted cycle. The stressor tables are finally vectorized to stressor data 

which have a suitable format for regression inputs. 

The stressor extraction as a type of data preprocessing has hyperparameters. These are the signal interval 

width, cycle window width 𝑤𝑤𝑤𝑤 , and cycle window shift 𝑤𝑤𝑠𝑠. First, the signal interval width for the 

stressor types used in Eq. (2) and displayed in Figure 2 is defining the sampling granularity of the 

 
2 Data from battery cell no. 1 of the 50th cycle from [9].  
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signals’ bins. E.g., the temperature signal could be split into intervals of 1 °C or 2 °C. On the one hand, 

a finer signal interval width increases the number of input features as the stressor table in Figure 2 has 

more values, but will also provide more information to the ML regression model. On the other hand, a 

bigger signal interval width increases the robustness of the method because noisy signals more likely 

stay in the correct interval. 

Second, one training sample is defined by the two points in time 𝑡𝑡1 and 𝑡𝑡2 which correspond to the 

current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) and future 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2). However, the stressor table in Figure 2 is only based on a single 

charging cycle, so 𝑡𝑡1 and 𝑡𝑡2 are close. Thus, we apply windowing to the battery cycles defined by a 

cycle window width 𝑤𝑤𝑤𝑤 which defines the number of cycles between 𝑡𝑡1 and 𝑡𝑡2 as shown in Figure 3. 

This means the stressor tables of the single cycles are simply added up for the whole window. The cycle 

window width defines for how many future cycles the model learns to forecast the SOH.  

 
 Figure 3: Hyperparameters of stressor extraction2F

3 

Third, to extract further training samples the cycle window is shifted by 𝑤𝑤𝑠𝑠 as visualized by the grey 

box in Figure 3. When increasing 𝑤𝑤𝑤𝑤 and 𝑤𝑤𝑠𝑠, the quantity of training samples decreases as fewer cycle 

windows can be generated from one battery. Exemplary, training samples consisting of the current 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) and vectorized stressor tables are shown in Table 2.  

 
3 SOH data from battery no. 25 of the 4th batch from [8]. 
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Table 2: Exemplary part of input feature vector 𝑥𝑥𝑛𝑛 and output value 𝑦𝑦𝑛𝑛. Signal interval widths is coarse according to Table 3. 
𝑤𝑤𝑤𝑤 = 50, 𝑤𝑤𝑠𝑠 = 50. Data from [9]. 

   Input vector 𝑥𝑥𝑛𝑛 Output 𝑦𝑦𝑛𝑛 
  t [h] Feature 1 Feature 2 Feature 3 Feature 4 …  

 Sample 𝑛𝑛 Cycles 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) 𝑡𝑡 0<𝐼𝐼≤3,
0<𝑇𝑇≤28

 𝑡𝑡 0<𝐼𝐼≤3,
28<𝑇𝑇≤31

 𝑡𝑡 0<𝐼𝐼≤3,
31<𝑇𝑇≤34

 … ∆𝑆𝑆𝑆𝑆𝑆𝑆 

C
el

l 1
 

1 1-50 97.33 % 0h 15.27h 2.73h … 0.55% 
2 26-75 97.87 % 0h 14.04h 2.70h … -0.02% 
3 51-100 97.88 % 0h 14.1h 2.63h … -0.07% 

… … … … … … … … 
47 1216-1175 93.80 % 0h 10.93h 3.51h … -0.35% 

C
el

l 2
 48 1-50 97.75 % 0h 14.16h 2.56h … 0.58% 

49 26-75 98.37 % 0h 14.49h 2.24h … -0.07% 
… … … … … … … … … 

 

When 𝑤𝑤𝑠𝑠 is greater than 𝑤𝑤𝑤𝑤, battery operational data of some cycles would be skipped. In the case of a 

𝑤𝑤𝑠𝑠 = 50 and 𝑤𝑤𝑤𝑤 = 25, we would generate windows from cycle 1-26, 51-76, but the cycles 27-50 

would not be used. Thus, in this case, we set the 𝑤𝑤𝑠𝑠 = 𝑤𝑤𝑤𝑤 to avoid skipping any data. The EOL of the 

battery is in most cases reached after a number of cycles that is not 𝑤𝑤𝑠𝑠 ∙ 𝑛𝑛 + 𝑤𝑤𝑤𝑤 with 𝑛𝑛 𝜖𝜖 ℕ. To avoid 

shorter windows than 𝑤𝑤𝑤𝑤 at the EOL, the last window is until the last cycle (EOL) and begins by 𝑤𝑤𝑤𝑤 

before the EOL. 

Figure 1 indicates that the model output is the future ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1 → 𝑡𝑡2). An alternative model output, 

would be the 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) + ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1, 𝑡𝑡2). The work of [22,23] is using the capacity fade ∆𝑄𝑄 

as output, which is similar to the ∆𝑆𝑆𝑆𝑆𝑆𝑆. [22] applies a specialization of the presented stressor extraction 

with 𝑤𝑤𝑤𝑤  and 𝑤𝑤𝑠𝑠  of one cycle. When applying their model for several cycles in a loop, we expect 

propagation of the model error. 

3.2 Machine Learning Regression Model 
The ML model uses the current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) and the stressor data as features according to Table 2. Once a 

model of a certain battery type has been trained, we want to minimize the amount of required training 

data to obtain a model for a new battery type (Req. 4 in section 1). Thus, we require a ML model that 

is suitable for transfer learning. Therefore, we choose multilayer perceptrons (MLP) as they store 

different information on different layers, which allows adaption to similar problems via transfer learning. 

Other models like support-vector regression (SVR) and random forest regression (RFR) are out of scope 
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of this paper as they do not allow transfer learning. Only for comparison to [22,23] we also implement 

GPR. 

MLP is a type of feedforward artificial neural network (ANN) used for regression tasks. According to 

the universal approximation theorem, an MLP with a single hidden layer can approximate any smooth 

function from one finite dimensional space to another to any desired degree of accuracy as long as 

sufficient hidden neurons are provided. However, no statement is made about the optimality of this 

approximation regarding the learning time, the ease of implementation or generalization [32–34].  

 

Figure 4: Example of a MLP with 𝑁𝑁(1) inputs, two hidden layers with 𝑁𝑁(2) and 𝑁𝑁(3) neurons and 𝑁𝑁(4) outputs. 

As depicted in Figure 4, a MLP can be described as a directed acyclic graph connecting 𝐿𝐿 layers, 

numbered from 𝑙𝑙 = 1 to 𝐿𝐿. The input layer 𝑙𝑙 = 1 is imaginary and corresponds to the inputs 𝑥𝑥 of the 

MLP. The last layer 𝑙𝑙 = 𝐿𝐿 corresponds to the outputs 𝑦𝑦 and the predicted outputs 𝑦𝑦�. Between these two 

layers there may be several hidden layers 𝑙𝑙 = 2, … , 𝐿𝐿 − 1, but at least one hidden layer is necessary. 

Each layer consists of 𝑁𝑁(𝑙𝑙) neurons. Except of the input layer, i.e., for all 𝑙𝑙 ≥ 2, the value 𝑧𝑧𝑗𝑗
(𝑙𝑙) of the 

neuron 𝑗𝑗 in the layer 𝑙𝑙 depends on the values of the neurons 𝑧𝑧𝑗𝑗
(𝑙𝑙−1) in the previous layer 𝑙𝑙 − 1 with the 

weights 𝑤𝑤𝑗𝑗𝑗𝑗
(𝑙𝑙−1) and biases 𝑏𝑏𝑗𝑗0

(𝑙𝑙−1) given: 

𝑧𝑧𝑗𝑗
(𝑙𝑙) = ℎ �𝑎𝑎𝑗𝑗

(𝑙𝑙)� = ℎ ��𝑤𝑤𝑗𝑗𝑗𝑗
(𝑙𝑙−1) ∙ 𝑧𝑧𝑗𝑗𝑗𝑗

(𝑙𝑙−1) + 𝑏𝑏𝑗𝑗0
(𝑙𝑙−1)

𝑁𝑁

𝑖𝑖=1

� (3) 
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The weight 𝑤𝑤𝑗𝑗𝑗𝑗
(𝑙𝑙−1) describes the connection strength of the neuron 𝑖𝑖 of the previous layer 𝑙𝑙 − 1 to the 

neuron 𝑗𝑗 of the next layer 𝑙𝑙. The bias 𝑏𝑏𝑗𝑗0
(𝑙𝑙−1) is independent of the input 𝑧𝑧𝑗𝑗𝑗𝑗

(𝑙𝑙−1) and useful for including 

any fixed offset in the data like unforeseen or nonobservable factors. The weighted sum of all inputs 

and the bias 𝑎𝑎𝑗𝑗
(𝑙𝑙) is used as argument of the nonlinear activation function ℎ(∙) to calculate the value 𝑧𝑧𝑗𝑗

(𝑙𝑙) 

of the neuron 𝑗𝑗 in the next layer 𝑙𝑙. Common activation functions are the hyperbolic tangent (tanh) and 

the rectifier. Equation (3) corresponds to a single neuron in the network and is used for the process of 

forward propagation that calculates the predicted output 𝑦𝑦�𝑛𝑛 of a MLP for a given input vector 𝑥𝑥𝑛𝑛. 

MLP training requires a data set 𝑆𝑆 = (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) with inputs 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋 ⊂ ℝ𝑚𝑚 and outputs 𝑦𝑦𝑛𝑛 ∈ 𝑌𝑌 ⊂ ℝ𝑜𝑜 with 

the samples 𝑛𝑛 = 1,2, … ,𝑁𝑁. The dimensions of the input and output vector are specified by 𝑚𝑚 and 𝑜𝑜 

respectively. For this method, 𝑚𝑚 depends on the number of entries in the stressor tables and 𝑜𝑜 = 1 for 

the ∆𝑆𝑆𝑆𝑆𝑆𝑆. Training an MLP is the process of minimizing a cost function 𝐽𝐽(𝑾𝑾,𝒃𝒃), also referred to as 

loss or error function, by finding optimal parameters 𝑾𝑾 and 𝒃𝒃, respectively weights and biases. The 

cost function measures the deviation of the target outputs 𝑦𝑦𝑛𝑛 and the outputs predicted by the network 

𝑦𝑦�𝑛𝑛(𝑥𝑥𝑛𝑛;𝑾𝑾,𝒃𝒃) which is parameterized by 𝑾𝑾 and 𝒃𝒃. A common cost function for regression problems is 

the mean squared error (MSE) as shown in Eq. (4).  

min
𝑾𝑾,𝒃𝒃

𝐽𝐽(𝑾𝑾,𝒃𝒃) =
1

2𝑁𝑁
�‖𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑛𝑛(𝑥𝑥𝑛𝑛;𝑾𝑾,𝒃𝒃)‖2
𝑁𝑁

𝑖𝑖=1

 (4) 

Further information on MLPs can be found in [32–34]. 

3.3 Model Application 
When applying the model, several variants exist: First, the model can be used for forecasting based on 

historical data. This would imply a forecast under the assumption of the same operational load as in the 

past. Second, the input features of historical data can be adapted under the assumption of changes in the 

operational load. This could be the case for the change of the operational strategy of a BEV fleet. This 

way the model can also be applied by battery designers like described in section 1. Third, explainable 

AI (XAI) methods can be applied to the SOH forecasting model to quantify the influence of relevant 

battery signals and value intervals on battery ageing.  
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The model’s requirements listed in section 1 are fulfilled: First, compared to models using operational 

time series data of e.g. current, temperature, and SOC directly as inputs, this model enables the 

aggregation of the time series data already on the device incorporating the battery (e.g. a BEV). The 

operational raw data does not need to be transmitted to e.g. a cloud, but only the aggregated tables are 

transmitted. This improves security and saves transmission and storage costs. Second, as presented in 

section 1, by applying transfer learning the size of the training data may be reduced significantly, once 

an initial model for a battery type has been trained. Third, this model enables battery developers and 

fleet managers to connect different ways of battery operation with battery ageing. The way of battery 

operation is specified by the inputs of the method (stressor tables of T, I, SOC). Humans may influence 

the way of battery operation, e.g. the battery temperature by the cooling system configuration, the 

maximum discharge and charge current configured in the BMS and the preferred SOC operational range. 

Other models require e.g. battery operational time series data that is no easily changeable, producible 

or interpretable by humans. Forth, the presented method is applicable in real-world operational 

conditions e.g. of a BEV fleets because the selected feature space could capture the higher variability 

of real-world operation compared to laboratory operation. Fifth, the method could work with SOH 

below 80% by learning the increasing SOH degradation depending on the battery operation encoded in 

the stressor tables. This enables the model’s applicability for 2nd life applications of batteries. 

4 Data basis 
The training data suitable for the method described in section 3 should be obtained from several batteries 

which have aged under a wide range of operational scenarios. This enables the model to forecast the 

SOH of batteries given an ageing scenario encoded in the stressors. 

This method is demonstrated on a public fast charging dataset [9]. It consists of 46 commercial lithium-

ion batteries cycled under fast charging conditions up to 80% SOH. These lithium-ion phosphate 

(LFP)/graphite cells, manufactured by A123 systems (APR18650M1A), were cycled in a forced 

convection temperature chamber set to 30°C under varied fast charging conditions but identical 

discharging conditions. All cells are charged with a two-step fast-charging protocol. This protocol has 

the format “C1(Q1)-C2”, in which C1 and C2 are the C-rates of the first and second constant-current 



Prep
rin

t 

Auth
ors

' V
ers

ion

steps (CC1 and CC2 respectively) and Q1 is the SOC at which the current switches. C1 and C2 range 

from 3 to 8C, while Q1 ranges from 15 to 80 % SOC.3F

4 The second current step ends at 80% SOC, after 

which the cells charge with another constant-current step at 1C (CC3) followed by a constant-voltage 

phase (CV). The upper and lower cutoff potentials are 3.6 V and 2.0 V respectively, which are 

consistent with the manufacturer’s specifications. These cutoff potentials are fixed for all current steps. 

After some cycling, the cells may hit the upper cutoff potential during fast charging, leading to 

significant constant-voltage charging. All cells discharge at 4C. The cells have a nominal capacity of 

1.1 Ah and a nominal voltage of 3.3 V.  

Available signals in the dataset are current, voltage, and temperature with a sampling rate of 

approximately 0.018 s. We did not apply any down sampling to the time series data. A sampling rate is 

sufficiently high in our opinion, if it captures short spikes, especially of the current. This is assumed to 

be the case in the controllers and the battery management system (BMS) anyways. Thus, we do not 

consider additional down sampling before aggregation of the time series data to stressor tables. The 

SOH values are defined by the discharged electric charge of the corresponding cycle.4F

5 The SOC signal 

is calculated offline relatively to the discharged electric charge of the previous cycle. Some SOH values 

corresponding to single cycles are inconsistently lower by at least 10 % when comparing to the 

neighboring SOH values. These values are interpolated linearly using the neighboring SOH values. We 

did not add noise to the signals because we firstly assume that the precision of the signals used by the 

BMS is also sufficient for our method. Secondly, the method is robust for noise of time series of current, 

temperature, and SOC because of the binning in the stressor tables. We do not use cells no. 1 and 19 as 

they show abnormal behavior. For example, cycle 11 of cell no. 1 is 11.8 times longer as the previous 

cycle because the switching from charging to discharging happens late.5F

6 This would skew the min-max-

normalization. We use cells no. 3, 7, and 8 as validation cells which means that they are not part of the 

training, validation or test set. 

 
4 C1 and C2 𝜖𝜖 {3, 3.6, 4, 4.4, 4.8, 5.4, 6, 7, 8}C. Q1 𝜖𝜖 {15, 25, 30, 35, 40, 50, 60, 70, 80} % SOC. 
5 The discharged electric charge is specified by the end value of the signal “Qd”. 
6 A similar situation is observed for cycle 851 of cell no.1 and the first 51 cycles of cell no. 19. 
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Figure 5: Different fast charging protocol within the data set [8] 

5 Results and Discussion 
5.1 Design of Experiments 
For developing this method for SOH forecasting it is essential to find suitable hyperparameters for the 

stressor extraction described in section 3.1. The examined hyperparameters are the signal interval width 

for current, temperature, and SOC as well as the cycle window width 𝑤𝑤𝑤𝑤 and shift 𝑤𝑤𝑠𝑠. We aim at finding 

the right balance of input features and training samples. Further, we examine different combinations of 

the signals of current, temperature, and SOC to stressor tables for charging, discharging, and hold mode. 

In addition, we examine the capability of the SOH forecasting model to generalize. 

Experiment 1a: Single window width 𝒘𝒘𝒘𝒘 

The cycle window width 𝑤𝑤𝑤𝑤 determines how many cycles into the future the model can forecast the 

SOH following Figure 3. To examine, how well the model forecasts small and big SOH degradations, 

we use different 𝑤𝑤𝑤𝑤. The maximal 𝑤𝑤𝑤𝑤 is limited by the battery cell no. 2 which ages the fastest. Thus, 

we create data sets with 𝑤𝑤𝑤𝑤 of 25, 50, 100, 200, 400, and 530 cycles (W1 to W6).  

Experiment 1b: Combined window width 𝒘𝒘𝒘𝒘 

We expect that a model trained with a data set of a certain 𝑤𝑤𝑤𝑤 will only be suitable to predict on samples 

of that or a similar 𝑤𝑤𝑤𝑤. This would limit the practical applicability of the model for example for fleet 

managers because they may be interested into the ageing after different amounts of cycles using one 
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model. Thus, we combine the aforementioned 𝑤𝑤𝑤𝑤 to further data sets as follows: {25, 50}, {50, 100}, 

{25, 50, 100}, {200, 400, 530}, {50, 200, 530}, and {50, 200, 400, 530} (W7 to W12). However, we 

cannot combine different signal interval widths as different signal interval widths have different input 

feature shapes requiring different input layers. 

Experiment 1c: Window shift 𝒘𝒘𝒔𝒔 = 𝟓𝟓𝟓𝟓 

A small 𝑤𝑤𝑠𝑠 will improve the ability of the MLP to interpolate as more samples are available, but the 

size of the training data will increase as well. When applying the method e.g. in BEVs the stressor tables 

will not be transmitted and saved in a central cloud after every battery cycle, but only after the battery 

has aged measurably. Thus, we create the data sets for experiments 1a and b with 𝑤𝑤𝑠𝑠 = 25 and for 

experiment 1c with 𝑤𝑤𝑠𝑠 = 50 (see Figure 3). 

Further, the data sets W1 to W12 each contain either fine, medium, or coarse signal interval widths as 

displayed in Table 3 (F, M, and C respectively). Thus, we create 36 data sets for each 𝑤𝑤𝑠𝑠. These data 

sets consist of stressor tables using two combined signals (2D) in the operational modes of charging, 

discharging, and hold as shown in Table 4 (2D stressor table, variant A). 

Table 3: Signal interval width for current, temperature and SOC 

 Signal interval width 
 Current Temperature SOC 
Fine (F) 0.5C 0.5 °C 5 % 
Medium (M) 1C 1 °C 10 % at 0 and 100%, else 20 % 
Coarse (C) 3C 3 °C 20 % 

 

Table 4: Combined signals for 2D stressor tables, variant A and B 

 Charging Discharging Hold 

variant A 
T & SOC T & SOC T & SOC 
I & SOC I & SOC  
I & T I & T  

variant B T & SOC T & SOC T & SOC 
I & SOC I & SOC  

 

First experiments deepened in section 5.2 show that the coarse signal interval width (C) with 𝑤𝑤𝑠𝑠 of 25 

and 𝑤𝑤𝑤𝑤 of 200, 400, and {25, 50, 100} cycles (W4, W5, and W9 each with C-2D,variant A) result in a 

coefficient of determination (𝑅𝑅2 ) greater than 0.99. Thus, we create further data sets to examine 
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variations of the stressor tables for 𝑤𝑤𝑤𝑤 W4, W5, and W9 as shown in Table 5. These all have a coarse 

signal interval width. 

Table 5: Data sets created for the experiments 

Exper. 
No. 

Abbreviation Signal interval 
width 

Cycle window 
width 𝒘𝒘𝒘𝒘 

Cycle window 
shift 𝒘𝒘𝒔𝒔 

Stressor 
tables 

1 2D,Variant A F, M, C 
See 

Table 3 

W1-12 25 and 50 A 
See 

Table 4 
2 2D,Variant B C W4, W5, and W9 25 B 
3 3D C W4, W5, and W9 25 A 
4 2D,Variant A C 1 cycle (W13) 1 A 

 

Experiment 2: 2D stressor tables , variant B 

Second, we create a data set with 2D stressor tables, but we change the signal combinations as shown 

in Table 4 (Wx-C-2D,variant B). In comparison to variant A in Experiment 1, this variant B does not 

contain any explicit stressor combination of current and temperature. We assume that this eases the 

applicability of the model as the dependency of current and temperature does not need to be considered 

explicitly when designing a sample for a forecast by a human (Req. 2). 

Experiment 3: 3D stressor tables 

Third, as stated in section 2.1, current, temperature, and SOC are relevant signals inducing battery 

ageing. To examine them as joint stressors, we create a data set with 3D stressor tables combining 

current, temperature, and SOC over all battery operational modes (Wx-C-3D).  

Experiment 4: Window width 𝒘𝒘𝒘𝒘 = 𝟏𝟏 and window shift 𝒘𝒘𝒔𝒔 = 𝟏𝟏 

Forth, Richardson et al. [22] use a data set with 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1. For comparison with them, we further 

create a data set with 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 using the 2D stressor table, variant A (W13-C-2D, variant A).  

For each data set a corresponding hyperparameter optimization was executed using Hyperopt version 

0.2.4 with Tree-structured Parzen Estimator (TPE) which resulted in a final model for each data set 

[35,36]. Hyperopt parameters were set to maximum of 1,000 evaluations and 100 random startup 

evaluations. Each data set was split for training, validation, and test by the ratio of 80:10:10. We apply 

min-max-normalization to each data set. The MSE on the validation data set was set as optimization 

metric for the hyperparameter optimization. The variable hyperparameters of the ANN and their range 

are chosen form experience and shown in Table 6. The constant hyperparameters of the ANN are the 
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optimizer Adam, 80 epochs, MSE as loss function, maximum of ten hidden layers and a linear activation 

function of the output layer. Version 2.0.4 of TensorFlow was used as back-end including version 2.2.4 

of Keras. 

Table 6: Overview of the used hyperparameters of the artificial neural network 

Hyperparameter Values 
Activation function of hidden layers Sigmoid, ReLU,6F

7 tanh 
Batch size 32, 64, 128 
Learning rate 𝛼𝛼 0.01, 0.001, 0.0001 
Number of layers [1, 10], in steps of 1 
Neurons per layer [5, 200], in steps of 10 

Choose one, 
others are 0: 

Regularization 
parameter 𝝀𝝀𝟏𝟏 or 𝝀𝝀𝟐𝟐 

0.01, 0.001, 0.0001 

Dropout rate 0.1, 0.2, 0.5 
 

5.2 Evaluation of Model Performance 
We first evaluate the results of the 36 models trained on data sets with 𝑤𝑤𝑠𝑠 = 25 (Experiment 1a and b). 

Afterwards we compare the results of 𝑤𝑤𝑠𝑠 = 25 and 𝑤𝑤𝑠𝑠 = 50 with each other (Experiment 1c). Then, 

we analyze the adapted 2D and 3D stressor tables (Experiments 2 & 3 respectively). We further assess 

𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 (Experiment 4). Finally, we evaluate MLPs trained with 2D stressor tables each with 

𝑤𝑤𝑠𝑠 = 1 and 𝑤𝑤𝑠𝑠 = 25. We also evaluate GPR fitted on the last data set. 

The hyperparameters of four MLPs are displayed in Appendix 8.2 (Table 11). The hyperparameter 

optimization never converges choosing the maximum of the value range for the number of layers and 

neurons per layer in Table 6. This underlines a suitable choice of the value range of the hyperparameters. 

As shown in Table 10, data sets with a large 𝑤𝑤𝑤𝑤 have a higher mean ∆𝑆𝑆𝑆𝑆𝑆𝑆, i.e. a higher mean output 

value. The variance of the output values also increases resulting in a greater variance of ∆𝑆𝑆𝑆𝑆𝑆𝑆 the 

models needs to fit. Thus, when comparing models with different 𝑤𝑤𝑤𝑤, i.e., a different output value 

distribution, the coefficient of determination (𝑅𝑅2) is suitable because it normalizes the MSE by the 

variance 𝜎𝜎𝑦𝑦2 as shown in Eq. (5) [37]. However, when comparing models with the same 𝑤𝑤𝑤𝑤 the RMSE 

is still favorable as it is non-relative, thus indicating the error in the real output value unit. 

 
7 Rectified linear unit (ReLU) refers to a neuron that employs the rectifier activation function. 
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𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 −
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

= 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

= 1 −
𝑁𝑁 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀
𝑁𝑁 ∙ 𝜎𝜎𝑦𝑦2

= 1 −
𝑀𝑀𝑀𝑀𝑀𝑀
𝜎𝜎𝑦𝑦2

= 1 −
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2

𝜎𝜎𝑦𝑦2
 (5) 

Where SST is the sum of squared totals, SSE the sum of squared explanations, SSR the sum of squared 

residuals, 𝑁𝑁 the number of samples in the data set, 𝑦𝑦𝑖𝑖 the true output value, 𝑦𝑦� the mean, 𝜎𝜎𝑦𝑦2 the variance 

of these values, and 𝑦𝑦�𝑖𝑖 the predicted output value of the model. 𝑅𝑅2 represents the percentage of variance 

explained by the model. The optimal score is 1.0. 

Experiment 1a: Single window width 𝒘𝒘𝒘𝒘 

For each data set W1 to W12, we observe a positive influence of finer signal interval width on the 

models’ RMSEs as depicted in Figure 7. A finer signal interval increases the number of features as 

shown in Table 10. This improves the distinguishability of the samples and thus reduces the RMSE. 

This effect seems to diminish from W1 to W6 in Figure 6 when looking at 𝑅𝑅2. However, as noted earlier, 

𝑅𝑅2 is an unsuitable metric for the analysis of the signal interval width due to its normalization. The 

described effect can still be observed when zooming into Figure 6.  

Despite the use of regularization techniques, we observe overfitting for all models without combined 

𝑤𝑤𝑤𝑤 in Figure 7 (W1 to 6). For these models the RMSE on the test data set is on average 65% worse 

than on the training data set. It has to be noted that the RMSE from W1 to W6 also increases because 

the mean of the output value increases (see Table 10). Thus, in the following we look at 𝑅𝑅2 as a relative 

RMSE (see Eq. (5)). 

When increasing 𝑤𝑤𝑤𝑤 for the coarse signal interval width, measured by 𝑅𝑅2 in Figure 6 the models fit 

better. For W4 to W6 in Figure 6 for all three data sets 𝑅𝑅2 is above 0.99, meaning these models explain 

at least 99% of the variance in the output data. For these models, 𝑅𝑅2 on the training data set is on average 

0.49% better than on the test data set. For W1 to W3, this value is 2.05%. Thus, the generalizability is 

better for W4 to W6 than for W1 to W3. One reason for this might be the data set size which decreases 

from W1 to W6 (see Table 10). The more important reason is seen in the output value distribution also 

shown in Table 10. From W1 to W6 the mean of the output values increases which means the model is 

trained to learn greater SOH degradations. The variance of the output values also increases which means 
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that the model learns a greater variety of SOH degradations. Both ease the distinguishability of the 

samples for the model. 

From this observation we conclude that a data set with samples that cover a longer 𝑤𝑤𝑤𝑤 is more suitable 

for model training. A longer 𝑤𝑤𝑤𝑤 also makes sense for the practical applicability for fleet operators: They 

are more interested in the battery ageing after a longer period like more than 200 cycles (W5). They are 

not so much interested in the battery ageing after only 25 cycles (W1). Assuming an intensive use of 

the BEVs with two charging events per day, these two 𝑤𝑤𝑤𝑤 would correspond to a forecast of three or 

only 0.5 months. 

Experiment 1b: Combined window width 𝒘𝒘𝒘𝒘 

We also examined the combination of different 𝑤𝑤𝑤𝑤 to one data set (W7 to W12) which increases the 

data set size as shown in Table 10. When combining different 𝑤𝑤𝑤𝑤 for the coarse signal interval width, 

we observe different effects: Combining W1 and W2 to W7 does not improve 𝑅𝑅2 on the training data, 

but improves the generalization on validation and test data. Remarkably, separately for W1, W2, and 

W3 𝑅𝑅2 is 0.9714 on average for the test data, but when combining W1, W2, and W3 to W9 𝑅𝑅2 is 0.993 

on the test data. Also, W9 achieves a higher 𝑅𝑅2 compared to W7 and W8 on the test data. Thus, we 

conclude that combining data sets with short 𝑤𝑤𝑤𝑤  which are similar to each other does not provide 

enough incentive for generalization. We observe improved generalization with combined 𝑤𝑤𝑤𝑤 also for 

W10 to W12, though the effect decreases for combining longer 𝑤𝑤𝑤𝑤. The models W7 to W12 generalize 

better because the models have to abstract features from samples with different 𝑤𝑤𝑤𝑤. Thus, combining 

different 𝑤𝑤𝑤𝑤 into one data set is favorable. 
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Figure 6: Model performance W1 to 12 with 𝑤𝑤𝑠𝑠 = 25 - 𝑅𝑅2  
(Additional boxes show zoom of W4 to W6 and W9 to W12 respectively) 
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Figure 7: Model performance W1 to W12 with 𝑤𝑤𝑠𝑠 = 25 - RMSE 

Experiment 1c: Window shift 𝒘𝒘𝒔𝒔 = 𝟓𝟓𝟓𝟓 

After examining models trained on data sets with 𝑤𝑤𝑠𝑠 = 25, the same configurations only with 𝑤𝑤𝑠𝑠 = 50 

are examined. The results for 𝑅𝑅2 and RMSE show slightly inferior results for all models (see Appendix 

8.2, Table 13). When increasing 𝑤𝑤𝑠𝑠 from 25 of 50 the number of samples is roughly halved. With fewer 

samples, the models were neither able to fit nor to generalize as well as they did with 𝑤𝑤𝑠𝑠 = 25. 

Furthermore, the single samples have more overlapping cycles with 𝑤𝑤𝑠𝑠 = 25 which leads to better 

training results without the necessity for more battery time series data. Also, the MLP has more sample 

points to interpolate in between. 

Experiment 2: 2D stressor tables, variant B 

The data sets with coarse 2D stressor tables variant B have 30 features less than with 2D stressor tables 

variant A. Switching from 2D stressor tables variant A to B did not worsen the RMSE or 𝑅𝑅2 of the 

models. Thus, we see the combination of battery signals into 2D stressor tables with variant B as 

sufficient for learning SOH degradation. 
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Table 7: Results of models trained on 2D stressor tables, variant B, and 𝑤𝑤𝑠𝑠 = 25 (Wx-C-2D,variant B) 

Interval Window width 𝒘𝒘𝒘𝒘 RMSE 𝑹𝑹𝟐𝟐 
Train Validation Test Train Validation Test 

Coarse 

200 cycles  
(W4-C-2D, variant B) 0.1538 0.208 0.3034 0.9987 0.9966 0.9897 

400 cycles  
(W5-C-2D, variant B) 0.1978 0.1794 0.3186 0.9989 0.9976 0.9946 

{25, 50, 100} cycles 
(W9-C-2D, variant B) 0.1321 0.1723 0.1568 0.9947 0.9911 0.9935 

 

Experiment 3: 3D stressor tables 

The data sets with coarse 3D stressor tables combining current, temperature, and SOC over all battery 

operational modes (W4-/W5-/W9-C-3D) have 20 more features than with 2D stressor tables, variant A. 

The results of models trained on coarse 3D stressor tables and 𝑤𝑤𝑠𝑠 = 25  are shown in Table 10. 

Switching from 2D to 3D stressor tables did not improve the RMSE or 𝑅𝑅2 of the models significantly. 

Thus, we see the combination of battery signals into 2D stressor tables as sufficient for learning SOH 

degradation. 

Table 8: Results of models trained on 3D stressor tables and 𝑤𝑤𝑠𝑠 = 25 (Wx-C-3D) 

Interval Window width 𝒘𝒘𝒘𝒘 RMSE 𝑹𝑹𝟐𝟐 
Train Validation Test Train Validation Test 

Coarse 

200 cycles (W4-C-3D) 0.2159 0.234 0.2845 0.9981 0.9955 0.9901 
400 cycles (W5-C-3D) 0.2193 0.2507 0.3828 0.9981 0.9952 0.9922 
{25, 50, 100} cycles 
(W9-C-3D) 0.1226 0.1728 0.1581 0.9954 0.9911 0.9933 

 

Experiment 4: Window width 𝒘𝒘𝒘𝒘 = 𝟏𝟏 and window shift 𝒘𝒘𝒔𝒔 = 𝟏𝟏 

The features used by Richardson et al. [22] correspond to 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 in the presented method. Their 

best validation RMSE for predicting the capacity change of a battery cell is 0.0201. We compare their 

best model with our coarse data set with 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 and 2D stressor tables variant A. On this data 

set, we reach a test RMSE of 0.0357. In comparison, our method performs worse by 43%, but [22] did 

not provide the RMSE on the training data set. Thus, potential overfitting of their model cannot be 

checked. For our model, RMSE on the test data set is only 9% worse than on the training data set. 

Further, [22] do not publish 𝑅𝑅2 of their models, but on the aforementioned data set our test RMSE of 

0.0357 corresponds to 𝑅𝑅2 of only 0.388. The worst test 𝑅𝑅2 of all other examined variations shown in 
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Figure 6 is 0.949. Concluding 𝑅𝑅2 of 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 is 59% worse than the worst of the other 𝑤𝑤𝑤𝑤 (W1 to 

W12). 

Table 9: Results of models trained on 2D stressor tables, variant A, and 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 (W13-C-2D, variant A) 

Interval Window width 𝒘𝒘𝒘𝒘 RMSE 𝑹𝑹𝟐𝟐 
Train Validation Test Train Validation Test 

Coarse 1 cycle  
(W13-C-2D, variant A) 0.0325 0.0312 0.0357 0.5499 0.4436 0.3881 

 

This becomes also obvious in Figure 8 which depicts the model fit of three different data sets each split 

into training, validation, and test data by comparing the predicted versus measured ∆𝑆𝑆𝑆𝑆𝑆𝑆 values. A 

good fit would show predictions that are close to the true values. Thus, the blue dots should be closely 

around the orange identity line. The mentioned data set with 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 is shown in part b) of Figure 

8. Not even on the training data set a good fit is reached. In addition, the overfitting is evident as the 

deviation from the identity line is even larger for validation and test data. Contrarily, the data set W9 

with 𝑤𝑤𝑠𝑠 = 25 and 2D stressor table, variant A, depicted in in part a) shows a very good fit and 

generalization which are important for practical application. Richardson et al. [22] use GPR with a 

Matérn-Kernel with 𝜈𝜈 = 2.5. When using the same data as in part a), but using GPR as [22] instead of 

MLP as in part a), we achieve the results shown in part c) of Figure 8. Compared to c) the overfitting is 

even higher. Compared to a) the RMSE on the training data is better, but overfitting occurs. The 

comparison with a) indicates that GPR overfits more easily on the same data. Thus, we favor MLP. 
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Figure 8: Predicted versus measured ∆𝑆𝑆𝑆𝑆𝑆𝑆 values for a) MLP, 𝑤𝑤𝑤𝑤 = {25, 50, 100}  (W9-C-2D, variant A), 𝑤𝑤𝑠𝑠 = 25; b) 

MLP, 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1 (W13-C-2D, variant A); c) GPR, 𝑤𝑤𝑤𝑤 = {25, 50, 100}  (W9-C-2D, variant A), 𝑤𝑤𝑠𝑠 = 25 (Same data as in 
a) but with GPR); Common data set characteristics: Coarse, 2D stressor table, variant A. 

Summarizing the results, combining different 𝑤𝑤𝑤𝑤 to one training data set improves generalization. Also, 

models trained with features extracted for fine signal intervals provide more precise forecasts than 

coarse signal intervals. 𝑤𝑤𝑠𝑠 = 25 is favorable to 𝑤𝑤𝑠𝑠 = 50. Using 3D stressor tables does not improve the 

model’s forecast compared to 2D stressor tables, while 2D stressor tables variant B compared to variant 

A of the 2D stressor tables does not worsen the model’s forecast. 

The results are limited by the used data set. The battery data was obtained from batteries cycles with 

100% ∆𝑆𝑆𝑆𝑆𝑆𝑆. Cycles with smaller ∆𝑆𝑆𝑆𝑆𝑆𝑆 were neither part of the data basis, nor could they be used for 

validation. Furthermore, discharging currents were constant over the entire data set. So, findings for 
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non-constant discharging currents as in automotive applications are limited. Still the models and their 

input features can capture non-constant discharging currents. Furthermore, it has to be noted that the 

used data is on battery cell level, but the battery system’s SOH is also of interest.  

6 Conclusion 
Machine learning models for battery SOH degradation [6,22,23] exist. Each of them has certain 

weaknesses limiting model application in automotive context of BEVs (Req. 1-5). For example, they 

face variations in charging and discharging current which is not considered by the models (Req. 3). We 

propose a ML method for SOH forecasting applicable for BEV fleet managers and battery designers in 

real world applications based on MLPs. As model inputs, we used the battery operation time within 

certain operational ranges defined by combinations of the battery signals current, SOC, and temperature 

during a certain number of cycles. The chosen input features are not limited to the application of 

laboratory data, but applicable to real-world operation of BEV fleets. For example, highly fluctuating 

discharging currents, variable ∆𝑆𝑆𝑆𝑆𝑆𝑆 for each cycle and long hold periods for calendar ageing can be 

captured by the model (Req. 3). Our findings state that combining different cycle window widths 𝑤𝑤𝑤𝑤 

to one training data set improves the generalization of the model. Furthermore, the fineness of the 

operational ranges of the signals does not limit the model if the 𝑤𝑤𝑤𝑤 is larger than 100 cycles or different 

𝑤𝑤𝑤𝑤 are combined. Also, we observed that GPR overfits more easily than MLP on the same stressor data. 

BEV fleet managers can improve the operation and replacement of their fleet members by applying the 

proposed SOH forecasting model. As a next step, model validation with data obtained from real-world 

operational data shall be executed. However, the differences of SOH forecasting on battery cell and 

system level has to be examined more closely. Also, XAI shall be applied to give insights into the ANN. 

When adding noise to the time series signals, the influence of data accuracy on the performance of the 

method could be evaluated. After proofing the suitability of the proposed ML model for SOH 

forecasting in this paper, we will evaluate transfer learning on the proposed model to enable quick 

applicability on new batteries as argued in section 1. 
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8 Appendix 
8.1 Dataset characteristics 

Table 10: Dataset characteristics, 2D stressor tables, variant A (Wx-x-2D, variant A) 

Interval Window width 𝒘𝒘𝒘𝒘 
[cycles] 

# 
features 
𝒎𝒎 

Window shift 𝒘𝒘𝒔𝒔 = 𝟐𝟐𝟐𝟐 Window shift 𝒘𝒘𝒔𝒔 = 𝟓𝟓𝟓𝟓 

# 
samples 
𝑵𝑵 

Output 
value 

distribution 
∆𝑺𝑺𝑺𝑺𝑺𝑺 (𝝁𝝁,𝝈𝝈) 

# 
samples 
𝑵𝑵 

Output 
value 

distribution 
∆𝑺𝑺𝑺𝑺𝑺𝑺  (𝝁𝝁,𝝈𝝈) 

Fine 
25 (W1) 

2802 
1387 

(-0.51, 0.72) 
1387 

(-0.51, 0.72) 
Medium 404 (-0.51, 0.72) (-0.51, 0.72) 
Coarse 157 (-0.51, 0.72) (-0.51, 0.72) 

Coarse 

50 (W2) 

157 

1346 (-1.00, 1.35) 705 (-1.08, 1.47) 
100 (W3) 1264 (-1.87, 2.41) 664 (-2.03, 2.63) 
200 (W4) 1100 (-3.23, 3.66) 582 (-3.51, 4.04) 
400 (W5) 772 (-5.51, 4.67) 418 (-5.91, 5.11) 
530 (W6) 557 (-7.16, 5.03) 309 (-7.60, 5.41) 

Coarse 

{25, 50} (W7) 

157 

2733 (-0.75, 1.11) 2733 (-0.75, 1.11) 
{50, 100} (W8) 2610 (-1.42, 1.98) 1369 (-1.54, 2.17) 
{25, 50, 100} (W9) 3997 (-1.11, 1.71) 3997 (-1.11, 1.71) 
{200, 400, 530} (W10) 2429 (-486, 4.62) 1309 (-5.24, 5.03) 
{50, 200, 400} (W11) 3218 (-2.84, 3.71) 1705 (-3.09, 4.07) 
{50, 200, 400, 530} 
(W12) 3775 (-3.48, 4.22) 2014 (-3.78, 4.60) 
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8.2 Hyperparameters of the Multilayer Perceptrons 
Table 11: Hyperparameters, model complexity, and metrics of MLPs trained on W4, W5, W9 with 𝑤𝑤𝑠𝑠 = 25 as well as  

𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑠𝑠 = 1. Common data set characteristics: Coarse, 2D stressor tables variant A (Wx-C-2D, variant A) 

 Coarse, 2D stressor table, variant A 
 200 cycles (W4) 400 cycles (W5) {25, 50, 100} 

cycles (W9) 
𝒘𝒘𝒘𝒘 = 𝒘𝒘𝒔𝒔 = 𝟏𝟏 

(W13) 
Hyperparameters  
Activation Function ReLU ReLU ReLU ReLU 
Batch Size 64 128 32 32 
Learning Rate 𝛂𝛂 0.001 0.001 0.0001 0.001 
Regularization 
{𝛌𝛌𝟏𝟏,𝛌𝛌𝟐𝟐} {0, 0.001} {0, 0.001} {0, 0.001} {0, 0} 

Dropout rate 0 0 0 0.1 
MLP layout [330, 280, 155, 

330, 305, 330, 
105] 

[330, 130, 255, 
205, 305, 155] 

[280, 180, 55, 
55, 280, 130] [330, 330] 

Model Complexity  
No. of Hidden 
Layers 7 6 6 2 

No. of Model 
Parameter 476,651 291,471 160,196 148,501 

Metrics  

RMSE 
Train 0.177 0.1813 0.134 0.03247 
Validation 0.2225 0.2016 0.1638 0.03118 
Test 0.2909 0.2967 0.1574 0.03572 

𝐑𝐑𝟐𝟐 
Train 0.9984 0.999 0.9946 0.54993 
Validation 0.9962 0.9969 0.992 0.44363 
Test 0.9905 0.9953 0.9934 0.38807 
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8.3 Results 2D stressor tables, variant A 
Table 12: Results of models trained on different data set configurations with 2D stressor tables, variant A, and 𝑤𝑤𝑤𝑤 = 25 

(Wx-2D, variant A, corresponding to Figure 6 and Figure 7) 

In
te

rv
al

 

Window width 𝒘𝒘𝒘𝒘  
[cycles] 

RMSE 𝑹𝑹𝟐𝟐 

Train Validation Test Train Validation Test 

Fi
ne

 

25 (W1) 0.0613 0.132 0.1267 0.9929 0.9681 0.9694 
50 (W2) 0.0752 0.1233 0.1775 0.9972 0.9917 0.9859 
100 (W3) 0.0852 0.1226 0.1537 0.999 0.998 0.994 
200 (W4) 0.1361 0.1432 0.1814 0.9993 0.9984 0.9963 
400 (W5) 0.1577 0.1798 0.2084 0.9991 0.9976 0.9977 
530 (W6) 0.1854 0.1961 0.3355 0.9991 0.9982 0.9961 
{25, 50} (W7) 0.0601 0.1152 0.0985 0.9972 0.9882 0.992 
{50, 100} (W8) 0.0821 0.0999 0.1333 0.9987 0.9972 0.9961 
{25, 50, 100} (W9) 0.0737 0.0895 0.084 0.9985 0.9976 0.9981 
{200, 400, 530} (W10) 0.1382 0.2036 0.1915 0.9993 0.9984 0.9983 
{50, 200, 400} (W11) 0.1086 0.1501 0.154 0.9992 0.998 0.9983 
{50, 200, 400, 530} (W12) 0.1331 0.1434 0.1571 0.9993 0.9988 0.9987 

M
ed

iu
m

 

25 (W1) 0.1179 0.1257 0.1472 0.9886 0.971 0.9587 
50 (W2) 0.1042 0.1576 0.2052 0.9944 0.9864 0.9812 
100 (W3) 0.1366 0.1341 0.2082 0.9978 0.9976 0.989 
200 (W4) 0.1684 0.1762 0.2003 0.9988 0.9976 0.9955 
400 (W5) 0.1172 0.2191 0.2315 0.9994 0.9964 0.9971 
530 (W6) 0.1768 0.2657 0.2883 0.9989 0.9967 0.9971 
{25, 50} (W7) 0.1135 0.1191 0.1014 0.9958 0.9874 0.9915 
{50, 100} (W8) 0.1102 0.1294 0.1586 0.9971 0.9953 0.9945 
{25, 50, 100} (W9) 0.1466 0.114 0.121 0.9971 0.9961 0.9961 
{200, 400, 530} (W10) 0.3337 0.2653 0.3088 0.9969 0.9972 0.9956 
{50, 200, 400} (W11) 0.1642 0.2214 0.2468 0.9982 0.9957 0.9957 
{50, 200, 400, 530} (W12) 0.1835 0.218 0.2222 0.9987 0.9973 0.9975 

C
oa

rs
e 

25 (W1) 0.1132 0.1461 0.1626 0.9872 0.9609 0.9496 
50 (W2) 0.1439 0.1786 0.2009 0.9915 0.9825 0.982 
100 (W3) 0.1534 0.1937 0.2613 0.9965 0.995 0.9827 
200 (W4) 0.177 0.2225 0.2909 0.9984 0.9962 0.9905 
400 (W5) 0.1813 0.2016 0.2967 0.999 0.9969 0.9953 
530 (W6) 0.181 0.313 0.3519 0.9989 0.9954 0.9957 
{25, 50} (W7) 0.119 0.1672 0.1426 0.9908 0.9752 0.9833 
{50, 100} (W8) 0.1861 0.171 0.2505 0.9937 0.9917 0.9863 
{25, 50, 100} (W9) 0.134 0.1638 0.1574 0.9946 0.992 0.9934 
{200, 400, 530} (W10) 0.3491 0.3334 0.3816 0.9969 0.9956 0.9933 
{50, 200, 400} (W11) 0.2139 0.319 0.3081 0.9974 0.9912 0.9933 
{50, 200, 400, 530} (W12) 0.2659 0.2857 0.3029 0.9969 0.9953 0.9953 
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Table 13: Results of models trained on different data set configurations with 2D stressor tables, variant A, and 𝑤𝑤𝑤𝑤 = 50 
(Wx-2D, variant A) 

In
te

rv
al

 

Window width 𝒘𝒘𝒘𝒘  
[cycles] 

RMSE 𝑹𝑹𝟐𝟐 

Train Validation Test Train Validation Test 

Fi
ne

 

25 (W1) 0.0642 0.1334 0.1227 0.9936 0.9674 0.9713 
50 (W2) 0.0774 0.1722 0.2156 0.9952 0.9872 0.9808 
100 (W3) 0.1105 0.2928 0.2483 0.9987 0.9887 0.9906 
200 (W4) 0.1611 0.2477 0.377 0.998 0.9924 0.9907 
400 (W5) 0.1432 0.2415 0.3847 0.9993 0.9968 0.9952 
530 (W6) 0.2936 0.407 0.6596 0.9967 0.9929 0.9837 
{25, 50} (W7) 0.0649 0.1159 0.1063 0.9974 0.9881 0.9907 
{50, 100} (W8) 0.082 0.1194 0.1395 0.9989 0.9965 0.9952 
{25, 50, 100} (W9) 0.0755 0.0906 0.0883 0.9983 0.9975 0.9979 
{200, 400, 530} (W10) 0.142 0.2356 0.2719 0.9993 0.9979 0.9971 
{50, 200, 400} (W11) 0.112 0.1961 0.2136 0.9993 0.9975 0.9973 
{50, 200, 400, 530} (W12) 0.1422 0.2024 0.2185 0.9994 0.9981 0.9976 

M
ed

iu
m

 

25 (W1) 0.0715 0.1352 0.1377 0.9912 0.9665 0.9639 
50 (W2) 0.1313 0.1767 0.2139 0.9907 0.9865 0.9811 
100 (W3) 0.1717 0.3932 0.3681 0.9951 0.9796 0.9793 
200 (W4) 0.3094 0.274 0.4767 0.9949 0.9907 0.9851 
400 (W5) 0.2953 0.3428 0.4357 0.9983 0.9935 0.9938 
530 (W6) 0.3727 0.5268 0.4758 0.9966 0.9881 0.9915 
{25, 50} (W7) 0.1041 0.1327 0.119 0.9919 0.9844 0.9883 
{50, 100} (W8) 0.0949 0.1512 0.1999 0.9981 0.9943 0.9901 
{25, 50, 100} (W9) 0.1391 0.1144 0.1003 0.9973 0.9961 0.9973 
{200, 400, 530} (W10) 0.2366 0.3913 0.4573 0.9976 0.9943 0.9918 
{50, 200, 400} (W11) 0.2048 0.271 0.3325 0.9976 0.9952 0.9934 
{50, 200, 400, 530} (W12) 0.1632 0.2951 0.3612 0.9987 0.9959 0.9935 

C
oa

rs
e 

25 (W1) 0.1201 0.1423 0.1693 0.986 0.9629 0.9454 
50 (W2) 0.2532 0.242 0.3285 0.9815 0.9748 0.9555 
100 (W3) 0.4565 0.4325 0.3209 0.9879 0.9753 0.9843 
200 (W4) 0.3143 0.2928 0.5666 0.9949 0.9893 0.9789 
400 (W5) 0.1847 0.2553 0.4244 0.9991 0.9964 0.9941 
530 (W6) 0.213 0.5367 0.4227 0.9988 0.9876 0.9933 
{25, 50} (W7) 0.1342 0.1725 0.145 0.9888 0.9736 0.9827 
{50, 100} (W8) 0.1796 0.1933 0.2142 0.9942 0.9907 0.9886 
{25, 50, 100} (W9) 0.1361 0.1659 0.1644 0.9944 0.9918 0.9928 
{200, 400, 530} (W10) 0.2316 0.3864 0.5554 0.9979 0.9944 0.9879 
{50, 200, 400} (W11) 0.2557 0.437 0.5167 0.9968 0.9875 0.984 
{50, 200, 400, 530} (W12) 0.2744 0.4847 0.4165 0.9963 0.989 0.9913 
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