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Abstract 
Most existing methods for battery state of health (SOH) forecasting have been applied to battery cell 
data from laboratory operation for training and testing. This work goes beyond that by using battery 
pack data from real-world vehicle operation. Our data source is a fleet of 550 battery electric vehicles 
(BEVs). We aim to provide different feature sets that are accessible to the user groups of the SOH 
forecasting model like private BEV owners, BEV fleet managers, and battery designers. To this end, 
we investigate histogram-based features and accessible features. Our results show that a state-of-the-art 
SOH forecasting method based on histogram features works not only on battery cell data from 
laboratory operation, but also on battery system data from real-world BEV fleet operation. The model 
was able to learn the dependence of the SOH from the battery load, i.e., BEV usage. Switching from 
accessible features to the histogram-based features showed an improvement in model performance of 
up to 6.1 %. Two use cases for different operating strategies exemplary illustrate how the SOH 
forecasting model can be applied. 
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1 Introduction 
Lithium-ion batteries are a well-established power source in mobile consumer devices like notebooks 
and smartphones [1]. In recent years, however, they have found more and more application in the 
mobility sector, especially in battery electric vehicles (BEVs). In this application, the battery is 
estimated to be the most valuable component in 2030, still accounting for 25 % of the total cost [2,3], 
while it accounts for only 1 % to 4 % of the total cost in smartphones [4,5]. Apart from the cost aspect, 
BEVs have also higher performance and safety requirements for their high-voltage (HV) lithium-ion 
battery. In addition, BEVs are experiencing increased demand, which raises interest and the need to 
address the central component, the battery, in research and industry [2,6–8]. In particular, a deeper 
understanding of the state of health (SOH) of lithium-ion batteries is of interest as it relates to the ability 
to meet the performance requirements of the application and the residual value (RV) of the battery. The 
SOH compares the current state of the battery with the state of the battery at the beginning of life (BOL). 
As the SOH reflects the battery’s aging it highly depends on the usage and environmental conditions of 
the battery [9–11]. Thus, the future SOH is dependent on the BEV’s future usage and environmental 
conditions.  

The assessment of the current SOH with the battery data available at the current point in time is called 
SOH estimation. When the battery ages, the SOH decreases. Modeling this change of the SOH from a 
current SOH to a future SOH due to aging causes is called SOH forecasting. These aging causes are 
encoded in the battery operational load through parameters like state of charge (SOC), temperature, and 
current [12]. For these tasks the terms SOH estimation, prediction, and forecasting are used 
ambiguously in the literature. Especially, the terms prediction and forecasting are often used 
synonymously. However, [13] describe forecasting as prediction about the future so that forecasting 
seems the more precise term for the task considered in this paper. A further differentiation is discussed 
in our previous work [12] (see Section 2.1.1 there).  

Knowledge about the future SOH is relevant for different user groups in different contexts: For example, 
private BEV owners, BEV fleet managers, and BEV manufacturers are interested in the battery’s future 
RV, 2nd life applications, vehicle replacement planning, improvements of the BEV operational strategy 
regarding the SOH, and the battery warranty [12,14,15]. Until now only few forecasting methods exist 
that are applicable in real-world vehicle operation [12]. For an overview of methods for SOH 
forecasting like [16,17] we refer to the structured literature review in our previous work [12]. 

Of all the summarized methods in [12], none use a data set HV lithium-ion battery packs in BEVs 
operated in real-world vehicle operation (see Appendix Table 12). Moreover, most of these methods 
use data from lithium-ion battery cells (LIBs) operated in a laboratory (80%) confirming the summary 
of [18]. Other data sets listed in the Appendix in Table 12, either consist of few electric vehicles (EVs), 
only plug-in hybrid electric vehicles (PHEVs), but not BEVs, low-voltage (LV) batteries, or are from 
non-automotive contexts.  

In summary, the data-related major limitations of the existing works are as follows: First, batteries aging 
in the laboratory show several differences regarding battery operation compared to real-world BEV 
operation (L1) as listed by [12] and further detailed in this paper in Table 3. Second, most of the batteries 
operated in laboratory are cells, but not modules or packs which are installed in BEVs (L2). Although 
the SOH of battery cells, modules, and packs are interdependent, the SOH forecasting methods have 
not yet been applied to lithium-ion battery pack data from BEVs [12,18–20]. We discuss these 
limitations in more detail in Section 2. Data sets overcoming these limitations are more expensive and 
difficult to obtain compared to data from operation of cells in a laboratory: First, battery packs are more 
expensive than cells. Second, laboratory operation of batteries is usually more intensive to accelerate 
aging, e.g., by applying higher currents, higher temperatures, or no operational rest periods. As a result, 
batteries from BEVs require a longer period of operation to undergo significant aging. Third, because 
of the higher variability of BEV operation more batteries are required to obtain sufficient sampling 
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points. To overcome the above limitations, data from two domains appear to be appropriate and 
available: BEVs of private owners or BEVs in Mobility on Demand (MOD) use cases.0F

1  

To investigate whether the two data-related limitations mentioned above can be overcome, we build our 
method on our previous work [23] because of its advantages as shown in our structured literature review 
[12]: It is suitable to encode the variability of battery operational data from BEVs, especially the 
variable current signal which is non-identical over several cycles as further analyzed in Section 2.2. 
Also, it can easily be adapted to different forecast horizons by choosing the size of the sliding window. 
Furthermore, it is transferable to new battery types [24]. We adapt this state-of-the-art method so that 
features can be examined that are more accessible to different user groups as described in Section 2.3.  

The main contribution of this work is to investigate how a state-of-the-art method for SOH forecasting 
[23] of LIB cells in laboratory operation is suitable to forecast the SOH of a LIB system in vehicle 
operation (Cell & Lab  System & BEV). Therefore, in contrast to existing work on SOH forecasting, 
we use data from battery operation in a real-world MOD BEV fleet, not from laboratory operation. 
Further, we contribute an assessment of different feature sets for different user groups of SOH 
forecasting models. Lastly, the SOH forecasting model is practically applied to forecast the SOH of the 
BEV fleet under different operational scenarios. 

The remainder of this paper is structured as follows: First, lithium-ion batteries, the two mentioned 
limitations of current data sets, as well as the uncertainty in SOH forecasting are introduced more 
detailed in Section 2. Afterwards, in Section 3, the state-of-the-art method for SOH forecasting is 
explained including the newly used features. The used data basis from the MOD BEV fleet operation 
is presented in Section 4. Subsequently, we present and discuss our results in Section 5. Section 6 
concludes our work. 

2 State of the Art 
2.1 Lithium-Ion Batteries 
2.1.1 Battery Cell and Aging 
The major components of a LIB are: A negative electrode (anode), a positive electrode (cathode), the 
ion-conducting electrolyte, and the electrically insulating separator. For a schematic representation of a 
typical LIB and information on the operating principle, interested readers are referred to [1,25–27]. 
Regarding the aging characteristics, the cathode material is of high importance [28]. The traditional 
cathode material has been lithium cobalt oxide (LCO). Alternatives are lithium nickel manganese cobalt 
oxide (NMC) and lithium iron phosphate (LFP) which have advantages over LCO regarding safety, 
cost, and size [27].  

Battery aging is usually measured by the degradation of the SOH.1F

2 The SOH can be described by the 
internal resistance (𝑆𝑆𝑆𝑆𝑆𝑆R), the capacity (𝑆𝑆𝑆𝑆𝑆𝑆C), and the energy (𝑆𝑆𝑆𝑆𝑆𝑆E) [12,29,30]. 𝑆𝑆𝑆𝑆𝑆𝑆R  is the 
relative change of the internal ohmic resistance compared to a new battery. 𝑆𝑆𝑆𝑆𝑆𝑆C denotes the capacity 
𝐶𝐶(𝑡𝑡) relative to the called nominal capacity 𝐶𝐶nom which is specified by the battery manufacturer [31]. 
Analogous, 𝑆𝑆𝑆𝑆𝑆𝑆E is the total energy 𝐸𝐸max(𝑡𝑡) relative to the nominal total energy 𝐸𝐸nom [32]: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆E(𝑡𝑡) =
𝐸𝐸max(𝑡𝑡)
𝐸𝐸nom

 (1) 

As [32] state, 𝑆𝑆𝑆𝑆𝑆𝑆C and 𝑆𝑆𝑆𝑆𝑆𝑆E are related via the voltage 𝑈𝑈 because it holds that the energy of a battery 
is the product of the capacity 𝐶𝐶(𝑡𝑡) and average discharge voltage 𝑈𝑈dısch�������� [1]:  

𝐸𝐸max(𝑡𝑡) = 𝐶𝐶(𝑡𝑡) ∙ 𝑈𝑈dısch�������� (2) 

Alongside the capacity-based 𝑆𝑆𝑆𝑆𝑆𝑆C, the SOC is commonly known. Analogously to 𝑆𝑆𝑆𝑆𝑆𝑆C and SOC, 
the energy-based 𝑆𝑆𝑆𝑆𝑆𝑆E has a corresponding state of energy (SOE) defined as [33,34]: 

 
1 For a differentiation of Mobility on Demand (MOD) and Mobility-as-a-Service (MaaS) consult [21,22]. 
2 For a detailed introduction to the SOH consider Section 2.1 in our previous work [12]. 
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𝑆𝑆𝑆𝑆𝐸𝐸(𝑡𝑡) =
𝐸𝐸(𝑡𝑡)

𝐸𝐸max(𝑡𝑡)
 (3) 

with 𝐸𝐸(𝑡𝑡) as currently stored battery energy and [𝐸𝐸] = 𝑊𝑊ℎ.  

The 𝑆𝑆𝑆𝑆𝑆𝑆C and SOC neglect the energy losses of electrochemical reactions and internal resistances 
inside the battery because they only focus on the charge flow. However, the energy losses may affect 
the available energy provided to the BEV. Thus, the 𝑆𝑆𝑆𝑆𝑆𝑆E  and SOE are more meaningful and 
practically relevant for the operation of BEVs [33,35]. This is also manifested by BEV manufacturers’ 
common specification of the battery energy content in kWh and not of the capacity in Ah. Likewise, it 
corresponds to the legal requirement to specify the energy consumption in kWh/100 km for BEV 
advertisements in Germany [36]. Compared to the SOE, the SOC is useful for batteries with flat and 
short discharge voltage transients like lead-acid and alkaline nickel batteries. But the steeper and longer 
discharge voltage transients of lithium-ion batteries are only considered in the SOE, not the SOC, e.g., 
by the average discharge voltage 𝑈𝑈dısch�������� in Eq. (2) [34,37]. Also, the new United Nations (UN) Global 
Technical Regulation (GTR) No. 22 will accelerate the importance of the usable battery energy (UBE) 
and not the capacity as a measure of state because of the UBE’s importance for users, vendors, and 
buyers of BEVs [38,39]. Here, usable energy refers to the available net energy considering possible 
limitations of the usable SOC range by the BMS in contrast to the total or gross energy [40,41]. For the 
reasons mentioned above, we focus on the 𝑆𝑆𝑆𝑆𝑆𝑆E, for simplicity referred to as SOH in this work. 

Battery aging can be classified into calendar aging and cyclic aging. Calendar aging is associated with 
the storage of batteries, meaning no charging or discharging is applied. Hence, it is also called passive 
aging. Cyclic aging corresponds to the impact of battery usage on the SOH, i.e., aging due to charging 
and discharging [42].  

High temperatures (T) and high SOC are causing accelerated battery calendar aging [43,44]. For 
example, a high SOC over 80% accelerates solid electrolyte interphase (SEI) growth [45]. Other 
stressors accelerating battery aging are high charge and discharge C-rates2F

3 as well as a high ∆𝑆𝑆𝑆𝑆𝐶𝐶 
[42,46]. Even though battery stressors are qualitatively known as displayed in Table 1, their joint impact 
on the battery’s SOH has not been modeled quantitatively yet. 

Table 1: Aging mechanisms and their accelerating stressors [47,48] 

Battery component Aging Mechanisms Accelerated by 

Anode 

Lithium plating ↑ C-rate, ↓ T, ↑ SOC 
Electrolyte decomposition ↑ T, ↑ SOC 
SEI formation ↑ & ↓ SOC 
SEI decomposition ↑ C-rate, ↓ T 
SEI growth ↑ T, ↑ SOC 
Structural disordering ↑ C-rate, ↑ & ↓ SOC 
Corrosion and loss of electrical contact ↓ SOC 

Separator Blocked pores (Separator and Electrodes) ↑ T, ↑ SOC 

Cathode 

Dissolving of transition metals ↑ T, 
Binder decomposition ↑ T, ↑ SOC 
Structural disordering ↑ C-rate, ↑ T 
Corrosion and loss of electrical contact ↑ C-rate, ↑ T, ↑ SOC 

 

There exist three main characteristic battery aging trajectories: Linear, superlinear, and sublinear 
degradation as schematically illustrated in Figure 1. Linear degradation is characterized by a constant 
aging rate over the whole battery life. In contrast, batteries with superlinear degradation first age slowly, 
but change to accelerated aging after the knee-point. Sublinear degradation is often associated with SEI 
growth, which is self-passivating and, thus, self-limiting [49,50]. 

 
3 C-rate in 1/h = A/Ah is the current relative to the nominal capacity 𝐶𝐶nom. 
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Figure 1: Schematic types of battery aging trajectories (based on [49]) 

2.1.2 From Battery Cell to Battery Pack 
Most literature focuses on the SOH of battery cells [51–53]. Only few literature focuses on “full battery 
level”, i.e., pack-level [54]. For example, in our literature review [12] only 20 % of the data sets are on 
pack-level as pointed out in Section 1 (for details see Table 12, Appendix). However, in many 
applications including BEVs, not single battery cells, but battery packs are used.  

A battery pack is an energy storage device composed of one or several electrically connected cells or 
modules [55,56]. Composing a battery pack of cells, i.e., omitting module assembly, is also called cell-
to-pack (CTP) and can reduce parts and increase pack volume utilization [57]. Following ISO/IEC 
62620:2014 [55], a battery pack optionally has a package housing as well as a protection unit for control 
and monitoring. The protection unit for control and monitoring is usually called battery management 
system (BMS). In contrast to that, Kwade et al. [58] and Kampker [59] require the package housing, 
the BMS and additionally a cooling system. Väyrynen et al. [56] do not mention these three components 
at all. Instead, they introduce the term battery system that includes one or multiple battery packs 
including a cooling system, the BMS and peripherals. The terms battery pack and battery system often 
appear to be used as synonyms [60,61]. An overview of the discussed definitions is given in the 
Appendix in Table 13. In our perception, the term battery pack emphasizes that the battery is physically 
packed somehow. The term battery system emphasizes that the battery is a system composed of several 
components. In this work, we use the term battery pack following the definition of [55,56]. Extending 
the battery pack by housing, BMS, and cooling system, we define the term battery system. 

The BMS fulfills the following tasks [55,61,62]: Data acquisition, battery state determination, electrical 
management, safety management, thermal management, and communication. The basis for the other 
tasks is laid by acquiring data about the cell voltages 𝑉𝑉cell,𝑖𝑖, pack voltage 𝑉𝑉pack, the pack current 𝐼𝐼pack, 
and several temperatures at different spots inside the battery pack 𝑇𝑇pack,𝑖𝑖. The battery states determined 
usually are the SOC and SOH. The electrical management controls the charge and discharge process. 
This includes equalization charging, i.e., cell balancing which ensures that the cells in a pack have the 
same SOC, i.e., voltage. Cell balancing maximizes the battery’s useable amount of charge because the 
cell with the lowest voltage determines the end of discharging and the cell with the highest voltage 
determines the end of charging, both when hitting the respective voltage limits. Active cell balancing 
is only necessary in series connections. Due to Kirchhoff's voltage law cells in parallel connection 
balance each other automatically [9]. The safety management protects the battery against critical 
operation like overcharging, overdischarging, high and low temperatures, as well as short circuiting. 
The thermal management is cooling the battery and equalizing the temperature between cells. In EVs, 
the BMS is communicating with other devices via the Controller Area Network (CAN) Bus. 

A battery module is a group of battery cells in series (s) and/or parallel (p) connection [55,56,58,59,61] 
as depicted in Figure 2 a) and b). Usually, series and parallel circuits are combined: A parallel 
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connection consisting of cells in series connection is called parallel-series (ps) connection as in Figure 
2 c). A series connection consisting of cells in parallel connection is called series-parallel (sp) 
connection as in Figure 2 d). For example, 3s4p abbreviates three cells in series and four in parallel. 
The amount, connection, and split of the cells into modules and packs depends on the battery application. 
For further information consider [9,59]. 

 

 
a) Series (s) connection 

 

 
b) Parallel (p) connection 

 

 
c) Parallel-series (ps) connection 
(Also known as parallel strings) 

 

 
d) Series-parallel (sp) connection 

(Also known as strings of parallel) 
 

Figure 2: Cells in series (s), parallel (p), parallel-series (ps) and series-parallel (sp) connection [19,63–66].3F

4 

As derived by [12], the SOH of cells in series connection 𝑆𝑆𝑆𝑆𝑆𝑆C,s(𝑡𝑡) is the cells’ minimal 𝑆𝑆𝑆𝑆𝑆𝑆C,𝑖𝑖(𝑡𝑡) 
assuming 𝐶𝐶nom is the same for all cells [19,63,70]:4F

5 

𝑆𝑆𝑆𝑆𝑆𝑆C,s(𝑡𝑡) = min
𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆C,𝑖𝑖(𝑡𝑡) with 𝑖𝑖 = 1,2, . . . ,𝑛𝑛s. (4) 

The SOH of cells in parallel connection 𝑆𝑆𝑆𝑆𝑆𝑆C,p(𝑡𝑡)  is the average of all single cells’ 𝑆𝑆𝑆𝑆𝑆𝑆C,𝑗𝑗(𝑡𝑡) 
assuming 𝐶𝐶nom is the same for all cells [19]: 

𝑆𝑆𝑆𝑆𝑆𝑆C,p(𝑡𝑡) = 1
𝑛𝑛p
∑ 𝑆𝑆𝑆𝑆𝑆𝑆C,𝑗𝑗(𝑡𝑡)𝑛𝑛p
𝑗𝑗=1  with 𝑗𝑗 = 1,2, . . . ,𝑛𝑛p. (5) 

 
4 Feng et al. [67] denote the combined connection topologies vice versa: Our depicted ps connection is denoted 
as sp connection by them and the sp vice versa as ps correspondingly. They describe their sp as series-
connections in parallel and ps as parallel-connections in series. [64] call ps “parallel strings of cells” and sp 
“strings of parallel cells” but the acronyms are the same. [68,69] use the terminology “parallel cell module” 
(PCM) for cells within a module wired in parallel and the modules wired in series (here sp). Correspondingly, a 
“series cell module” (SCM) contains cells wired in series and the modules wired in parallel (here  ps). 
5 The assumption that 𝐶𝐶nom is the same for all cells is not made by Juhlin [19] but mathematically necessary. Its 
fulfillment is given in practice as the same battery cell type is usually built within one battery module or pack. 
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Thus, a higher degradation of a single cell has a bigger influence on the SOH in a series connection 
than in a parallel connection. 

Aging of battery modules and systems is more complex than of a single cell because of the interactions 
of all cells. These interactions cause the degradation process of the battery pack and of the cells in that 
pack to depend on each other [71]. It is influenced by inconsistencies of cell characteristics, also known 
as intrinsic cell-to-cell variability [72], electrical imbalance, and temperature gradients between cells 
that cause heat transfer to adjacent cells [51,73]. For example, Bruen and Marco [74] observe significant 
differences of cells in parallel regarding their current which results in different temperature distributions 
and aging of the cells. Jung et al. [75] found that the internal temperature within battery modules is 
higher than of a single cell because of the heat transfer to adjacent cells. This is especially the case when 
a single cell is degrading more and its internal resistance increases resulting in higher heat generation 
[76]. However, cells in parallel strings with initially different 𝑆𝑆𝑆𝑆𝑆𝑆C and 𝑆𝑆𝑆𝑆𝑆𝑆R showed a convergence 
of the difference [77]. Overall, Dubarry and Beck [78] conclude that effort has been little to study the 
different inhomogeneities and cell-to-cell variations in battery packs. For more information regarding 
inconsistency of packs consider [79]. 

The main drivers of battery aging are the three signals I, T, and SOC. The interdependencies of these 
signals when switching from cell to pack level are compared in Table 2. 

Table 2: Interdependencies of I, T, and SOC on battery aging when switching from cell to pack level. 

Signal Cell level Module and pack level 

I 𝐼𝐼 = 𝐼𝐼cell,𝑖𝑖  
𝐼𝐼pack splits up to 𝐼𝐼cell,𝑖𝑖 depending on series/parallel 
configuration and 𝑅𝑅cell,𝑖𝑖 according to Kirchhoff’s 
laws 

T 
Heat dissipation by cell 𝑖𝑖 due 
to 𝐼𝐼cell,𝑖𝑖 and 𝑅𝑅cell,𝑖𝑖 5F

6 and 
𝑇𝑇environment 

Heat dissipation by cell 𝑖𝑖 due to 𝐼𝐼cell,𝑖𝑖 and 𝑅𝑅cell,𝑖𝑖, 
heat transfer with adjacent cells, heat loss to 
cooling system,6F

7 and 𝑇𝑇environment 

SOC 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑆𝑆𝑆𝑆𝐶𝐶cell,𝑖𝑖 
𝑆𝑆𝑆𝑆𝐶𝐶pack depends on 𝑆𝑆𝑆𝑆𝐶𝐶cell,𝑖𝑖 by the same logic as 
𝐶𝐶(𝑡𝑡) and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) considering the series/parallel 
configuration and cell balancing 

 

2.2 From Laboratory to Real-World Vehicle Battery Operation 
Differences of battery aging data sets from laboratory and real-world vehicle operation have already 
been discussed by [12]. However, they present both as sharply distinct from each other. In the following, 
we show a smooth transition from controlled laboratory to uncontrolled real-world vehicle battery 
operation characterized by the current profile applied to the battery. Finally, we define further criteria 
of distinction than the current profile in Table 4. The introduced classification schema, i.e., taxonomy, 
shall enable a more precise differentiation of battery operation and corresponding data sets in the future. 

Battery operation can be differentiated by the current profile applied to the battery as structured by the 
2x2 matrix in Table 3. We define the current profile as the abstracted time series signal of the current 𝐼𝐼 
or C-rate applied to a battery for charging and discharging. The abstracted time series does not consider 
any small variation of the current due to current control, e.g., during constant current (CC) and constant 
voltage (CV) phases. During charging, excluding brake energy recuperation during driving, usually 
charging protocols are used so that the differences between laboratory and real-world operation usually 
originate from the discharging operation. Petrovic [80] distinguishes three modes of discharge: CC, 
constant load, and constant resistance. However, as he notes, automotive applications face variable 
discharging. 

 
6 In laboratory operation of single cells usually no cooling system, but a heating chamber is used to accelerate 
aging. We consider convection as possible, but radiation as negligible. 
7 In battery packs, we consider radiation and convection as negligible. 
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Table 3: Characterization of battery aging data sets in a 2x2 matrix by current profile applied to the battery. The arrows show 
direction from laboratory to real-world vehicle operation data. 

  Current 

  Constant Current (CC) steps 
(optional constant voltage (CV) phase) 

Variable Current (VC) 

C
ur

re
nt

 p
ro

fil
e 

ov
er

 c
yc

le
s Identical 

(I) 
I-CC: 

1) 1 CC step [81–83] 

2) Multistage CC steps 
(MCC) [84,85] 

I-VC: 

1) Replay of recorded current profile 
from vehicle [86,87] 

2) Representative profile [86,88–94] 

3) Driver following predefined 
profile [95] 

Non-
identical 
(NI) 

NI-CC: 

1) CC steps with randomized 
current [96,97] 

NI-VC: 

1) Real-world vehicle operation 
[98–100] 

 

 

We propose two criteria to differentiate battery aging data sets: First, we distinguish whether the current 
profile is identical (I) over all cycles, usually for laboratory operation, or non-identical (NI) over all 
cycles (Rows of Table 3). Second, we distinguish whether the profile has a CC or variable current (VC) 
in the columns of Table 3.7F

8 When having CC, also optional short CV phases are included, i.e., non-CC 
shall not be caused by a controller during a VC phase.  

Thus, with CC steps and optional CV phases, we obtain the 1st type of I-CC with an identical, single 
CC step and an optional CV step (I-CC.1) and the 2nd type of I-CC with identical, multistage CC (MCC) 
steps (I-CC.2). These two are common types of charging protocols [102]. The exact time length of the 
CC steps may vary due to battery aging.  

The next step towards real-world vehicle battery operation is still with CC steps, but the CC steps of 
different cycles are non-identical (NI-CC). This may be the case if the current of each CC step is 
randomly sampled such as in [96]. The random CC sampling better represents practical battery usage 
than non-random CC operation [103]. 

Further, with VC the current profiles of different cycles can be still identical (I-VC), as, first, the current 
profile can simply be a replay of a recorded profile, e.g., from vehicle operation that is repeated for each 
cycle (I-VC.1). Second, the current profile can be defined by a representative profile (I-VC.2). 
Examples are the Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP)8F

9 [104], Urban 
Dynamometer Driving Schedule (UDDS) [105] or any representative driving cycle (RDC) that 
aggregately represents real-world operation [106]. Third, a unique professional driver can reproduce a 
certain current profile on a private track as in [95] (I-VC.3). In this case, the current profiles can only 
approximately be identical over several cycles.  

 
8 These criteria are also called “change during a single cycle” (CC vs. VC) and “change between different 
cycles” (I vs. NI) by [101]. 
9 The older New European Driving Cycle (NEDC) (German “Neuen Europäischen Fahrzyklus” (NEFZ)) 
consists of linear slopes and phases of constant velocity. During the phases of constant velocity the current 
profile will be constant as well. 

From laboratory to real-world vehicle battery operation 
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Lastly, non-identical current profile over several cycles and VC (NI-VC) specifies real-world vehicle 
operation in which no cycle-wise exact current patterns can be found. This is caused by different drivers, 
routes, traffic, weather, etc. 

Summarized, there is a transition of battery aging data sets from strong laboratory conditions to real-
world vehicle operation from I-CC via NI-CC, I-VC to NI-VC. Further criteria of distinction are 
mentioned in Table 4: First, the place of battery operation will likely be a test bench for I-CC, NI-CC 
and I-VC except I-VC.3 or alternatively a vehicle for I-VC.3 and NI-VC. Second, most data sets from 
test benches either have cyclic or calendar aging. Data sets applying cyclic and calendar aging to the 
batteries are rare [83]. However, in real-world vehicle operation, this is normal with dominating 
calendar aging [12]. Third, also for real-world vehicle operation, normally batteries in vehicles have a 
cooling system. This is usually not the case for operation on a test bench. Fourth, the battery 
environment temperature on test benches is usually either a nearly constant room temperature or defined 
by a heating chamber. In real-world vehicle operation, the batteries face the outdoor temperature with 
seasonal changes. Fifth, most battery aging data sets use single cells. Battery modules are rarely used 
on test benches and only in small quantities as in [107] (I-CC.1)9F

10 and [108] (I-VC.1).10F

11 Battery packs 
are built in vehicles I-VC.3 and NI-VC, but when such data sets are used, e.g., by [98,99], they have 
not been published, probably due to confidentially. 

Table 4: Further criteria to distinguish battery aging data sets. 

Criterion Possible Value 
Place of battery operation Test bench or in-vehicle operation 
Aging categories Cyclic or calendar aging 
Cooling system Yes or no 
Environment temperature Room temperature, Heating chamber, or outdoor 

temperature with seasonal changes 
Battery type Cell, module, or pack 

 

2.3 Uncertainty in State of Health Forecasting 
Forecasting makes statements about the future that is flawed by uncertainty. This uncertainty for SOH 
forecasting is about the future battery, BEV, or BEV fleet usage. He et al. [109] and Saxena et al. [110] 
describe this as operational environment uncertainty. We address the uncertainty about the future 
battery usage by using scenarios to understand the implications of battery usage on battery aging. In 
doing so, we characterize each scenario by assumptions about the future that are expressed in the model 
inputs. Scenarios are already common in strategic decision making under uncertainty [111–113]. Porter 
[113] defines a scenario as “an internally consistent view of what the future might turn out to be.” Thus, 
it is not a forecast, but only a likely reality of the future. As Porter [113] notes the assumptions 
characterizing a scenario might affect and violate each other. The latter can lead to the elimination of 
scenarios.  

Parallel to Porter’s [113] definition, we define usage scenarios of a machine like a BEV as a consistent 
view of the future usage of the machine. The definition can also be applied to fleets of machines 
following a definition of the term fleet [114]. Each usage scenario is based on plausible assumptions 
about important uncertainties regarding the machine’s future usage. Building on a single scenario, a set 
of usage scenarios should reflect a range of possible future usages with important implications for 
machine aging. Ensuring consistency of assumption about the future usage within a scenario can be 
difficult. Especially physical consistency may be difficult to assess, e.g., the range of a BEV is reduced 
due to the future load, but the assumption of range reduction may be inaccurate, affecting usage and 
ultimately aging.  

As in strategic decision making under uncertainty also in our work, the outcome of scenarios may range 
from trend to extreme scenarios. Trend scenarios assume the same usage in the future as in the past 

 
10 [107] only provide data of 4 packs each with 11 NMC 40Ah cells (4s11p) operated in series connection. 
11 [108] only provide data of 2 packs each with 16 cells (16s1p) operated for 20 and 200 cycles respectively. 
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(ceteris paribus) or only small changes. Positive and negative extreme scenario correspond to the best 
and worst case respectively. Apart from the outcome of a scenario an estimated probability can also 
express the likelihood of the scenario, i.e., the prediction interval [115]. 

Such scenarios can be based on concrete users or generalized personas regarding the BEV usage. 
Personas give a face to the user by specifying a fictional but still concrete representation of a target user 
and are a common tool in product development [116,117]. E.g., a persona may be characterized 
regarding her BEV usage, e.g., by mainly AC- or DC charging, mainly short-distance or long-distance 
trips either on rural roads or on highways. Also a persona describing a family with short-distance trips 
during the week, but long-distance trips at the weekend to visit friends and relatives is possible. 

From our point of view, the time period of the usage scenarios should cover a time horizon in which 
measurable and relevant aging of the machine can happen. This makes the scenarios distinguishable 
regarding different aging for the model users. For most machines and also for vehicles, this therefore 
rules out scenarios with a length of seconds or minutes. From our perspective, scenarios need to span 
weeks, months, or years. 

In the Section 1, the users of SOH forecasting models were distinguished as private BEV owners, BEV 
fleet managers, and battery designers. Each of these users of the model needs to express their 
assumptions about the future usage of the battery, i.e., the BEV, in the inputs of the SOH forecasting 
model. Given their different levels of technical experience and knowledge, we want to provide suitable 
model inputs for each user group. We assume that choosing simpler, but more interpretable and 
accessible model inputs, i.e., features, like the mileage may reduce the model’s performance, but 
increase usability for users with little technical knowledge. For example, drivers may have a gut feeling 
for the distance of 1,000 km, but little experience in translating that into a number of required fast 
charging sessions. Also, the translation from driving in eco vs. sport mode into technical changes, e.g., 
of the maximum discharge current is unknown and unimportant to most drivers, but relevant to battery 
designers. 

3 Method 
We build our method upon the state-of-the-art work of [23] which is shortly introduced in Section 3.1. 
An overview of methods for SOH forecasting is given in a structured literature review in our previous 
work [12]. There, we differentiate SOH estimation, i.e., the determination of a state, from SOH 
forecasting, i.e., the determination of a state change among others by two criteria: First, the relative 
temporal position of the model inputs and, second, what the input features of the model encode. For 
SOH estimation, the features encode the effect of the battery aging, like the SOH or capacity trajectory 
(autoregressive models), or changes in the partial charging curves. These data are obtained from the 
past or present until the current point in time 𝑡𝑡1. Examples of such methods are presented by [118] and 
the reviews [45,119–121]. For SOH forecasting, the features encode the causes of the battery aging, i.e., 
the battery operational load. The data on causes of battery aging is obtained from the current point in 
time 𝑡𝑡1 until the end of the forecast horizon 𝑡𝑡2. This is required for training, while for interference, i.e., 
prediction, scenario-based adaptions can be made expressing the future battery operational load, e.g., 
halving the amount of high-power charging (HPC) events. 

In Section 3.2, we present features to encode battery operation, in particular accessible features as 
alternative to histograms from the state-of-the-art work of [23]. 

3.1 State of Health Forecasting 
For this work, we chose to apply the base method from state-of-the-art work [23] depicted in Figure 3 
for several reasons: First, it fulfills the five key criteria examined in our structured literature review [12]. 
Second, the histogram features presented are suitable to encode the variability of real-world operation, 
especially the variable current signal which is non-identical over several cycles (VC-NI) as analyzed in 
Section 2.2. Third, the window-based method allows easy adaption to other features for different user 
groups as argued in Section 3.2.  
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As mentioned in Section 2.1, battery aging is perceived as a state change from a current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) to a 
future 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2) due to aging causes. The aging causes are encoded in the battery operational data which 
consist of multidimensional time series signals of C-rate, temperature, and SOE. As depicted in Figure 
3, first, this battery operational data from the window [𝑡𝑡1, 𝑡𝑡2] is used to extract stressor data of battery 
stressor types which are known to induce battery aging. Types of stressor data applied in this work are 
introduced in Section 3.2. Second, the stressor data is input of a machine learning (ML) model, that 
outputs the state change ∆𝑆𝑆𝑆𝑆𝑆𝑆  from a current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1)  to a future 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2) . As the training is 
supervised, both SOH values need to be known in the training phase. Nevertheless, in a production 
phase, only the 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) needs to be known.  

 

Figure 3: Model structure - stressor extraction (1) and ML model (2) [23] 

The window [𝑡𝑡1, 𝑡𝑡2] is favorable either over the equivalent full cycle (EFC) or over the time as battery 
aging can be cyclic or calendar aging. For better comparability with other methods, which are normally 
based on the EFC, a sliding window approach based on the EFC is chosen to derive training samples as 
in state-of-the-art work [23]. A window is specified by the cycle window width (WW) 𝑤𝑤𝑤𝑤  which 
defines the number of EFC between the current 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) and future 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡2). The cycle WW defines 
for how many future cycles the model learns to forecast the SOH (forecast horizon). The input length, 
i.e., the number of features is independent of the window width. To extract further training samples the 
cycle window is shifted by the window shift (WS) 𝑤𝑤s. 

Thus, the WS controls the number of generated samples and the amount of new operational data in each 
sample as the window shifts forward through time. If the WS is larger than the WW, some sections in 
the degradation curve would be skipped, leading to a loss of information. Thus, this case is not 
considered. More advantageous are the following two: If the WS equals the WW, each sample contains 
entirely new operational data. If the WS is smaller than the WW, the windows are partially overlapping.  

The desired accuracy of the SOH forecast will likely depend on the application of the SOH forecasting 
model: Is the forecast for new or old batteries? Is a rough forecast of those batteries close to EOL desired 
or a precise result for recommendations regarding the battery operational strategy? Based on the 
assumption that the relevant SOH range is from 100 % to 80 % in the automotive sector an error of 
+/- 1 % SOH for SOH forecasting seems just acceptable compared to an error of +/- 0.1 % SOH which 
might be acceptable. 

3.2 Stressor Data 
In this work, we extract two types of stressor data in step one in Figure 3 that are input of the ML model. 
Further stressor data without motivation from the literature is out of scope in this work. We use 
histograms as in state-of-the-art work [23] but also other stressors more accessible for non-domain 
experts, inspired by other existing works on SOH forecasting, are motivated. Thus, by using different 
stressor data features we examine the trade-off between model performance and feature interpretability 
for the model’s user. Therefore, we keep the same time windows, i.e., the same 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) as features 
and the same ∆𝑆𝑆𝑆𝑆𝑆𝑆 as output variables. This maintains the output value distribution and, thus, improves 
comparability among the different stressor data.  

Histograms 

Histograms11F

12 of different dimensionalities (1D, 2D, 3D) based on C-rate, temperature, and SOE have 
been used as stressor data [23]. Therefore, the signal interval width is defining the sampling granularity 
of the signals’ bins. E.g., the temperature signal could be split into intervals of 1 °C or 2 °C. The signal 

 
12 These histograms are called load spectrum or load collective in the field of mechanical fatigue analysis of 
machines and materials [122]. 
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interval width also influences the number of features, i.e., the input length. The suitability of multi-
dimensional residence time histograms has already been shown for SOH forecasting with LIB cell data 
from laboratory operation [23] and also regarding transferability among different cell data sets [24]. 

Accessible Features 

The more accessible features described in Table 5 are either inspired by other papers on SOH 
forecasting or motivated by possible user groups of SOH forecasting models. They either reflect cyclic 
or calendar aging. 

The term “accessibility” here refers to features that are easy to use and understand by the user groups. 
For example, users with little BEV experience can interpret 1,000 km of driving as with an internal 
combustion engine (ICE). They may also have a gut feeling for the usual number of their AC- and DC-
charging events per week why we choose this as an accessible feature. Also, as values based on 
experience for low or high fuel consumption exists, such experience for the energy consumption, e.g., 
in kWh/ 100 km may develop. From there an estimate of a energy throughput 𝐸𝐸thrpt required for a 
certain distance and terrain can be derived.  

Private BEV users may choose a certain driving mode to adapt the vehicle’s performance, e.g., 
regarding regenerative braking strength, or decreasing the accelerator pedal responsiveness for quick 
acceleration [123]. Further, an ECO mode could restrict the maximum power output to 80%, i.e., the 
maximum discharge current 𝐼𝐼dr,max assuming CV. The maximum available discharge current is easily 
adaptable and a method to slow down battery aging. 

For the operation and management of BEV fleets different viewpoints are relevant [114,124]: A role 
like a shift or operation manager might consider in the short term the amount of available BEVs and 
their SOE at shift beginning (𝑆𝑆𝑆𝑆𝐸𝐸park,mean). Further, a head of operations might be responsible for 
vehicle replacements by a new vehicle generation. Both shall not be required to acquire deep technical 
understanding, just as a private BEV user. However, they may be supported by a vehicle data analyst 
who has the technical understanding. 
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Table 5: Overview of accessible features 

 Name Symbol Unit Reference 
C

yc
lic

 a
gi

ng
 

Cycles from 𝑡𝑡1 until 𝑡𝑡2 𝑘𝑘 EFC [100,125–127] 
Delta mileage 𝛥𝛥𝛥𝛥 km [128,129] 
Number of AC charging processes 𝑛𝑛AC - [130] 
Number of DC charging processes 𝑛𝑛𝐷𝐷𝐷𝐷 - [130] 
AC charging energy throughput 𝐸𝐸thrpt,AC Wh  
DC charging energy throughput 𝐸𝐸thrpt,DC Wh  
Absolute max. charging current 𝐼𝐼ch,max 1/h [128,131,132]12F

13 
Mean charging current 𝐼𝐼ch,mean 1/h [128,131,132]13 
Standard deviation (SD) of charging 
current 

𝐼𝐼ch,SD 1/h [128,131,132]13 

Absolute max. current while driving13F

14 𝐼𝐼dr,max 1/h [128,131,132]13 
Mean current while driving 𝐼𝐼dr,mean 1/h [128,131,132]13 
SD of current while driving 𝐼𝐼dr,SD 1/h [128,131,132]13 
Min. temperature 𝑇𝑇min °C [131] 
Max. temperature 𝑇𝑇max °C [131] 
Max. SOE 𝑆𝑆𝑆𝑆𝐸𝐸max %  
SOE lift14F

15 𝛥𝛥𝑆𝑆𝑆𝑆𝐸𝐸 %  

C
al

en
da

r 
ag

in
g 

Parking time 𝛥𝛥𝑡𝑡park h [89] 
Mean parking SOE 𝑆𝑆𝑆𝑆𝐸𝐸park,mean % [89] 
Mean parking temperature 𝑇𝑇park,mean °C [89] 
Time from 𝑡𝑡1 until 𝑡𝑡2 𝛥𝛥𝑡𝑡total h [131] 

 

4 Data basis 
Using battery system operational data from real-world BEV operation, i.e., with non-identical current 
profiles over several cycles and VC (NI-VC) as introduced in Section 2.2, seems to become feasible as 
the registrations of BEVs have increased worldwide in the past years [7]. But the majority of these 
BEVs are used privately and are parked most of the time, e.g., approximately 89-97 % in Germany 
[133–135]. Battery aging is correspondingly slow, so data from BEVs operated in such a way will only 
be be suitable for creating SOH forecasting models in the future. In contrast to the domain of private 
BEVs, BEVs in Mobility on Demand (MOD) use cases are operated more intensively and age quicker 
[12,136]. Therefore, data from the domain of MOD BEV fleets is more suitable nowadays to apply 
SOH forecasting on real-world BEV operational data.  

Thus, we base our work on battery pack data of 550 BEVs operated in a ride-pooling MOD shuttle 
service in two large German cities. The total time span of data logging is 27 months including a total of 
7 months operational pauses due to COVID-19 restrictions. During the total time span the vehicles 
drove a total of 39.1 million km corresponding to 115,239 EFC. Based on the average total ∆𝑆𝑆𝑆𝑆𝑆𝑆 and 
the total EFC, the mean SOH decline is 0.017 % SOH per EFC. The energy throughput by charging 
was 53 % AC and 47 % DC with up to 7.2 kW and 100 kW charging power respectively. I.e., the highest 
charging C-rate of 1.25 is comparatively moderate. 

 
13 [132] use statistical properties of 𝐼𝐼disch. [131] use 𝐼𝐼mean. As it remains unclear whether it refers to charging or 
discharging, we derive 𝐼𝐼ch,mean and 𝐼𝐼dr,mean when 𝐼𝐼 ≠ 0. Also, our data set does not include 𝑄𝑄thrpt and 𝑆𝑆𝑆𝑆𝐶𝐶. 
Thus, we use the correlating 𝐸𝐸thrpt and 𝑆𝑆𝑆𝑆𝐸𝐸 instead respectively. [128] propose distributional information of the 
C-rate during cycling. 
14 Not a Number (NaN) values are not included. 𝐼𝐼dr,min means 𝑚𝑚𝑖𝑖𝑛𝑛(𝐼𝐼dr) if drive modus, i.e., including internal 
charging due to break energy recuperation. Also 𝐼𝐼dr < 0𝐴𝐴 for discharging. 
15 We assume ∆𝑆𝑆𝑆𝑆𝐸𝐸 = 𝑆𝑆𝑆𝑆𝐸𝐸max − 𝑆𝑆𝑆𝑆𝐸𝐸min. In their data set André et al. [131] only have ∆𝑆𝑆𝑆𝑆𝐸𝐸 of 60% and 
100%. 
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The HV system of the BEV is based on NMC-622 pouch cells. The BEV has a nominal energy content 
𝐸𝐸nom,pack of 87 kWh and a nominal capacity 𝐶𝐶nom,pack of 240 Ah. The BEV enables storing braking 
energy (braking recuperation) as well as coasting energy (coasting recuperation) of the motors. Via a 
DC/DC converter, the HV battery system also supplies the 12 V on-board electrical system for air 
conditioning, USB chargers, etc.  

Table 6: Details about used signals. 

Signal Sampling 
Time in s 

Resolution Calculated offline 

Current 𝐼𝐼 10 1 𝐴𝐴 ≙ 1𝐴𝐴
240𝐴𝐴ℎ

 = 0.0042𝐶𝐶  - 
Temperature 𝑇𝑇 ~120 0.5°C - 
𝑆𝑆𝑆𝑆𝐸𝐸 10 0.5 % - 
Energy 𝐸𝐸 10 50 Wh - 
Mileage ~60 1 km - 
BEV-mode 10 - - 
EFC 10 ~0.0025 f(𝑆𝑆𝑆𝑆𝐸𝐸), see. Eq. (6) 

SOH 10 ~0.36 %, see Eqs. (10)-
(18) f(𝐸𝐸, 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛, 𝑆𝑆𝑆𝑆𝐸𝐸), see. Eq. (7) 

 

The sampling time and signal resolution of the relevant time series signals are given in Table 6. The 
BEV-mode is driving (discharging or charging, i.e., recuperation), charging (externally by AC or DC), 
or parking. The EFC and the SOH are calculated offline as part of the data cleansing: 

𝐸𝐸𝐸𝐸𝐶𝐶(𝑡𝑡) = �
∑ |𝑆𝑆𝑆𝑆𝐸𝐸(𝑖𝑖 + 1) − 𝑆𝑆𝑆𝑆𝐸𝐸(𝑖𝑖)|𝑡𝑡−1
𝑖𝑖=𝑡𝑡0

200%
� 

(6) 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) =
𝐸𝐸max(𝑡𝑡)
𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

=
𝐸𝐸(𝑡𝑡)
𝑆𝑆𝑆𝑆𝐸𝐸(𝑡𝑡)

∙
1

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛
 

(7) 

with applying a symmetric weighted moving average with a manually-tuned time window of 10 d to 
smooth the SOH signal. This smoothed SOH value over EFC is shown as a boxplot of the whole fleet 
in Figure 4.  

Inference from this plot to the average energy consumption of the fleet is not straight forward because 
the BEVs have different SOH values at their BOL and the start of data logging. Especially their SOH 
at BOL may be not 100% because of the definition of 𝐸𝐸nom. Also, for each BEV a different mileage 
span is logged during the logged time span. Thus, comparability to other SOH trajectories is not easily 
possible. At the beginning a sublinear decrease transitions to linear aging. After 400 EFC only few data 
is available, i.e., fleet SOH values need to be interpreted carefully there.  
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Figure 4: Fleet SOH curve. 

Sufficiency of the Sampling Time 

When analyzing the sampling times of the signals given in Table 6, it is clearly visible in Figure 5 that 
a sampling time of 10 s is too high to accurately capture the discharge current signal of real-world 
vehicle operation. For example, an acceleration phase of a few seconds after a stop at city traffic lights 
with different characteristic current profiles depending on the driver would not be captured accurately. 
For CC charging such a higher sampling time is less critical. Also, for SOE and temperature a smaller 
sampling time is sufficient because they are both less dynamic, i.e., only change slowly in a period of 
time of about up to 100 s.  

 

Figure 5: Exemplary comparison of the current signal with different sampling rates. 

Greenbank and Howey [137] used histogram-based features for SOH forecasting as well. They 
concluded that increasing the sampling time of the two applied data sets [84,85] from 1 s to 100 s 
resulted in no difference of performance [137]. However, the two data sets used CC discharging so only 
little information was lost by the increased sampling time. This limits the applicability of their finding 
to our data set. 

Considering the histogram-based stressor data proposed in Section 3.2, we are interested in the quality 
of approximation of the used histograms based on signals with a lower sampling time by a histogram 
based on signals with a higher sampling time. This applies especially to the discharge current signal. 
As depicted in Figure 6, approximating discharge current histograms based on 100 ms sampling time 
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with histograms based on a 10 s sampling time seems feasible, even if deviations exist. Notably during 
driving-mode at C-rates around zero the largest deviation exists. However, those very low C-rates have 
no substantial effect on battery aging. Still, all deviations mark a limitation of the used data set. 

   
a) driving 

 
b) AC-charging 

 
c) DC-charging 

 

Figure 6: Approximation of histograms with high and low sampling time during a) driving, b) AC-charging, c) DC-charging. 

5 Results and Discussion 
In Section 5.1, we present the Design of Experiments (DOE) which is followed by the evaluation of the 
defined experiments in Section 5.2. The two types of stressor data defined in Section 3.2 are first 
evaluated separately and then compared with each other. Finally in Section 5.3, we apply one SOH 
forecasting model in two scenarios under changed operational conditions as proposed in Section 2.3. 

5.1 Design of Experiments 
Analogous to the defined stressor data in Section 3.2, histogram-based features and accessible features, 
we conduct two series of experiments as presented in Section 5.1.1 and Section 5.1.2 respectively. 

We did not apply a feature selection method because we want the complete operational space of 𝐼𝐼, 𝑆𝑆𝑆𝑆𝐸𝐸, 
and 𝑇𝑇 to be part of the model inputs. Also, as motivated and discussed in [12], we are aiming at a method 
to derive features that enables transfer learning and, therefore, is valid for multiple data sets. But transfer 
learning is not possible when different features are selected for different data sets.  

5.1.1 Histogram-based Features 
For showing the suitability of the chosen SOH forecasting method on a data set from battery systems 
in BEV fleet operation, it is essential to find good hyperparameter values of the stressor extraction 
described in Section 3.1. The five hyperparameters are examined in decreasing order of the influence 
of the parameter on the model performance based on experience from this work and our previous work 
[23] as shown in Figure 7: First, we examine the WW and WS of the time window as well as the signal 
interval width for current, temperature, and SOE (Experiment 1-3). Thereby, we aim at finding the right 
balance of input features and training samples. Further, we examine different combinations of the 
current, temperature, and SOE signals to stressor tables for charging, discharging, and parking mode 
(Experiment 4 & 5). We also examine the capability of the SOH forecasting model to generalize. 
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Figure 7: Structure of Design of Experiments for the histogram-based features. 

At the start of the DOE, we set the initial parameters as follows based on experience from this work and 
our previous work [23]: Window shift 𝑤𝑤s = 5 cycles, except if 𝑤𝑤w = 1 cycle as 𝑤𝑤s ≤ 𝑤𝑤w should be 
true. We used signal interval width coarse, 2D histograms and BEV mode A for the 2D stressor tables 
based on our previously published insights [23]. 2D stressor tables, variant A was modified by 
substituting “discharging” by “driving” which now includes micro-cycling due to regenerative braking. 

Experiment 1: Window Width 𝒘𝒘𝐰𝐰 

First, 𝑤𝑤w determines the forecast horizon and the number of cycles corresponding to the histograms  
aggregating the operational data. Thus, it also influences the distribution of the output value ∆𝑆𝑆𝑆𝑆𝑆𝑆 
which the ML model has to learn. The selection of 𝑤𝑤w depends on how many cycles sensibly can be 
aggregated together to offer sufficient variance among the histograms for the ML model to distinguish 
the samples. The selection of 𝑤𝑤w is inspired by forecast horizons listed in our structured literature 
review [12] like 30 cycles [138], 40 cycles [139], and 25 to 530 cycles [23], but also 1 cycle 
[17,127,131,132,140,141]. Furthermore, the relevance of the forecast horizon for BEV users and fleet 
managers is considered. Given the fleet’s SOH trajectory in Figure 4 with up to 450 cycles, larger 𝑤𝑤w 
like in our previous work [23] with data up to around 1000 cycles prohibits generating at least a few 
samples from each battery system. Thus, we choose 𝑤𝑤w,single ∈ {1, 5, 10, 25, 50, 100} (W1 to W6). We 
also combine these 𝑤𝑤w because this showed improved generalization on battery cell data in our previous 
work [23]: 𝑤𝑤w,combined ∈ �{10, 25}, {25, 50}, {50, 100}, {10, 25, 50}, {25, 50, 100}� (W7 to W11).  

Experiment 2: Window Shift 𝒘𝒘𝐬𝐬 

Second, 𝑤𝑤s influences how many cycles the window is shifted during sample generation, i.e., how many 
samples are generated. Thus, its setting needs to ensure sufficient sampling points for the ML model to 
learn from and to acquire the ability of good interpolation in between the sampling points, i.e., a good 
model fit. We choose 𝑤𝑤s  depending on 𝑤𝑤w  because of their interaction as 𝑤𝑤s ∈ {5, 10, 25, 50, 100} 
cycles with 𝑤𝑤s ≤ 𝑤𝑤w to avoid skipping operational data, as mentioned before. 

Experiment 3: Signal Interval Width 

Third, the signal interval width, i.e., the width of the histograms’ bins, determines the amount of features 
in the histograms. A finer signal interval width enables the histograms to represent the underlying time 
series data more precisely. We specify fine, medium, and coarse signal interval width (F, M, and C 
respectively) for current, temperature, and SOE in Table 7. Combining different signal interval widths 
like different 𝑤𝑤w is not possible because they have different input feature shapes requiring different 
input layers. Compared to our previous work [23], we adapt the granularity of the current and 
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temperature bins because their overall range is different in this data set. For the C-rate an additional 
interval for zero current is introduced, representing the parking mode. 

Table 7: Signal interval width for current, temperature, and SOE 

  Current in 1/h Temperature in °C SOE in % 
Bin range [-1.5, 1.5] [-20, 50] [0, 100] 

Bin 
width 

Fine (F) 0.1 3 5 
Medium (M) 0.3 5 10 
Coarse (C) 0.5 10 20 

 

Experiment 4: Histogram Dimension 

Forth, the dimension of the histogram can either be 1D, 2D, or 3D, i.e., one, two, or all three signals of 
𝑇𝑇, 𝐼𝐼, and 𝑆𝑆𝑆𝑆𝐸𝐸 are combined in one histogram. A lower dimensional histogram can be seen as a column-
wise or row-wise aggregation of a higher dimensional histogram. Thus, lower dimensional histograms 
have fewer features, but lack a representation of the signals’ interdependence. 

Experiment 5: Separation of BEV Modes 

Fifth, histograms depending on the BEV mode are examined as listed in Table 8: Separate histograms 
for charging, driving & parking (BEV mode A), AC-/DC-charging, driving & parking (BEV mode B), 
and joint histograms for all BEV modes (BEV mode C) are differentiated. Thus, BEV mode C has only 
three histograms (T & SOE, I & SOE, I & T) and does not differentiate the BEV mode. 

Table 8: Combined signals for 2D stressor tables by BEV mode. 

 T & SOE I & SOE I & T 

BEV mode A15F

16 
Charging, 
Driving, Parking 

Charging, 
Driving 

Charging, 
Driving 

BEV mode B 
AC-Charging, 
DC-Charging, 
Driving, Parking 

AC-Charging, 
DC-Charging, 
Driving 

AC-Charging, 
DC-Charging, 
Driving 

BEV mode C No differentiation No differentiation No differentiation 
 

5.1.2 Accessible Features 
We aim at finding a set of accessible features for non-domain experts, i.e., of non-histogram scalars that 
represent battery load as motivated in Section 3.2. In experiment 1, we only use 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1), to determine 
suitable 𝑤𝑤s  for 𝑤𝑤w = {10, 25, 50, 100} from experiment 1 with histogram-based features. Then, in 
experiment 2a and 2b cyclic and calendar aging features are analyzed respectively. Next, all of these 
features are combined in experiment 3.1 and only the best of experiment 2a and 2b are combined in 
experiment 3.2. We structure all experiments with accessible features in Table 9. 

 
16 Called variant A in our previous work [23]. 
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Table 9: Other feature sets used as stressor data. 
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1 x              
2a.1 x  x            
2a.2 x   x           
2a.3 x    x          
2a.4 x     x         
2a.5 x      x        
2a.6 x       x       
2a.7 x        x      
2b.1 x          x    
2b.2 x           x   
2b.3 x            x  
2b.4 x             x 
3.1 x  x x x x x x x  x x x x 
3.2 x     x x        

 

5.1.3 General Settings 
Each data set generated with a different setting of histogram-based or accessible features as described 
in Section 5.1.1 or 5.1.2 respectively, was split to enable evaluation of the model’s generalization 
performance. First, to enable evaluation of the model’s generalization performance on different vehicles 
than in the training and validation data set, 5% of the vehicles were chosen as test vehicles (2. Test). 
I.e., this tells about the model’s forecast performance on new vehicles that recently joined the fleet 
without any time series used for training sample generation. Second, the samples of the remaining 
vehicles were split into the training, validation, and test data (1. Test) by the ratio of 80:10:10, reaching 
an overall ratio of 76:9.5:9.5:5 for training, validation, and the two test sets. The training data set was 
used to fit the model’s parameter and the validation data set served for early stopping and 
hyperparameter optimization. The 1st test data set enables evaluation of the model’s generalization 
performance on the same vehicles as in the training and validation data set. E.g., neighboring time 
windows may not be in the same data set.  

We apply min-max-normalization to each data set based on the minimum and maximum values of the 
training data set. Similar to our previous work [24], we scale 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) separately from the other features. 
The histograms are also scaled separately for the BEV modes, i.e., AC-/ DC charging, discharging, 
parking, to preserve the relations within each BEV mode. Otherwise the values of charging and 
discharging would be very small due to larger parking times. We scale the accessible features separately 
from each other because they have limited physical relation to each other. 

As ML model, we choose a multi-layer perceptron (MLP) because it showed good results in previous 
work, also in comparison to other ML and deep learning models [23,142]. For each data set a 
corresponding hyperparameter optimization was executed using Hyperopt version 0.2.7 with Tree-
structured Parzen Estimator (TPE) which resulted in a final model for each data set [143,144]. Hyperopt 
parameters were set to a maximum of 500 evaluations and 100 random startup evaluations. The mean 
squared error (MSE) on the validation data set was set as optimization metric for the hyperparameter 
optimization. The variable hyperparameters of the MLP and their range are chosen from experience and 

 
17 𝐼𝐼ch,dr = �𝐼𝐼ch,max, 𝐼𝐼ch,mean, 𝐼𝐼ch,SD, 𝐼𝐼dr,min, 𝐼𝐼dr,mean, 𝐼𝐼dr,SD� with the BEV modes “ch” as charging and “dr” as 
driving. 
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are shown in Table 10. The constant hyperparameters of the MLP are the optimizer Adam, 300 epochs, 
MSE as loss function, ReLU activation function of the hidden layers,17F

18 and a linear activation function 
of the output layer. Early stopping is applied so that training stopped earlier than 300 epochs if the 
validation error did not decrease for more than 10 epochs. Version 2.8.0 of TensorFlow is used as back-
end including version 2.8.0 of Keras. 

Table 10: Overview of the used hyperparameters of the MLP during hyperparameter optimization. 

Hyperparameter Values 
Batch size 32, 64, 128 
Learning rate 𝛼𝛼 log-uniform distribution [0.0001, 0.01] 
Number of layers uniform distribution [1,15] 
Neurons per layer log-uniform distribution [20,500] 

Choose one, 
others are 0: 

Regularization 
parameter 𝜆𝜆1 or 𝜆𝜆2 

log-uniform distribution [0.001, 0.1] 

Dropout rate log-uniform distribution [0.1, 0.5] 
 

5.2 Evaluation of Model Performance 
We first evaluate the results of the models trained with histogram-based features in Section 5.2.1 and 
then with the accessible features in Section 5.2.2. Section 5.2.2 concludes with a comparison of both 
feature types. The hyperparameter optimization of the MLP never converges choosing the maximum of 
the value range in Table 10. This underlines a suitable choice of the value range of the hyperparameters. 

For model comparison trained on data sets with different 𝑤𝑤w, we use 𝑅𝑅2 instead of the root mean 
squared error (RMSE) because 𝑤𝑤w changes the output value distribution (∆𝑆𝑆𝑆𝑆𝑆𝑆) and 𝑅𝑅2 normalizes 
the error by the variance of the output value distribution. 𝑅𝑅2 represents the percentage of variance 
explained by the model. The highest possible score is 1.0. A score of 0.0 means that the model is as 
good as predicting the mean of the output values.  

We define two criteria for model evaluation: First, the standard deviation (SD) 𝜎𝜎  of the model’s 
performance on the data sets 𝑠𝑠 ∈ 𝑆𝑆 = {𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡, 𝑣𝑣𝑡𝑡𝑣𝑣𝑖𝑖𝛥𝛥𝑡𝑡𝑡𝑡𝑖𝑖𝑣𝑣𝑛𝑛, 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡1, 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡2}  shall be small to avoid 
overfitting:18F
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𝜎𝜎 = 𝜎𝜎𝑅𝑅𝑆𝑆2 < 0.1 or σ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆 < 0.1 %-𝑆𝑆𝑆𝑆𝑆𝑆 (8) 

Second, if fulfilling the first criterion the mean 𝜇𝜇 of the model’s performance on training, validation, 
and both test data sets shall be minimal: 

min 𝜇𝜇𝑅𝑅𝑆𝑆2 or min 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆 . (9) 

We refrained from a comparison to state-of-the-art models, like those listed in our previously published 
literature review [12], because of different data sets, different forecast horizons, different metrics, and 
different output values used, which limit comparability [12]. Thus, comparisons are limited to the same 
output value (∆𝑆𝑆𝑆𝑆𝑆𝑆) and the same data set only by variation of one parameter like the forecast horizon 
(𝑤𝑤w) and different input features describing the battery operation. 

5.2.1 Histogram-based Features 
The histogram-based features experiments are executed to analyze the effect of the following 
parameters on the model performance: The window width 𝑤𝑤w, window shift 𝑤𝑤s, signal interval width, 
histogram dimension, and separate histograms for each BEV mode. 

 
18 Rectified linear unit (ReLU) refers to a neuron that employs the rectifier activation function. 
19 With 𝜎𝜎𝑅𝑅𝑆𝑆2 = � 1

|𝑅𝑅|
∑ �𝑅𝑅𝑠𝑠2 − 𝜇𝜇𝑅𝑅𝑆𝑆2�

2
𝑠𝑠∈𝑅𝑅  and 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆 = � 1

|𝑅𝑅|
∑ �𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸𝑅𝑅 − 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆�

2
𝑠𝑠∈𝑅𝑅  as well as the corresponding 

𝜇𝜇𝑅𝑅𝑆𝑆2 = 1
|𝑅𝑅|
∑ 𝑅𝑅𝑠𝑠2𝑠𝑠∈𝑅𝑅  and 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆 = 1

|𝑅𝑅|
∑ 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸𝑠𝑠𝑠𝑠∈𝑅𝑅  respectively where 𝑅𝑅𝑠𝑠2 and 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸𝑠𝑠 are 𝑅𝑅2 and 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 on the 

respective data set 𝑠𝑠. 
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Experiment 1: Window Width 𝒘𝒘𝐰𝐰 

The results of the models with a single window width are visualized in Figure 8. For all plots, the dotted 
red line in the lower plot indicates the upper limit for the SD of the 𝑅𝑅2 from the first evaluation criterion. 

For models trained on a data set with a small 𝑤𝑤w like 1 EFC and 5 EFC, the first criterion is fulfilled 
(𝜎𝜎𝑅𝑅𝑆𝑆2 < 0.1), but the mean performance 𝜇𝜇𝑅𝑅𝑆𝑆2  is low with only 0.045 and 0.172 respectively. This is likely 
caused by the bigger resolution of the SOH signal, 0.36 % in Table 6, compared to the small ∆𝑆𝑆𝑆𝑆𝑆𝑆 
during few EFCs, 0.0173 % per EFC and vehicle of the whole fleet. This confirms the problem of small 
∆𝑆𝑆𝑆𝑆𝑆𝑆 during few EFCs that also appeared with laboratory battery cell data in our previous work [23]. 
Thus, small 𝑤𝑤w are not suitable due to low model performance.  

For larger 𝑤𝑤w like 25 EFC, 50 EFC, and 100 EFC, we observe overfitting as 𝜎𝜎𝑅𝑅𝑆𝑆2 increases gradually 
which is especially caused by a decreasing 𝑅𝑅2  on the 2nd test data set, while 𝑅𝑅2  of the training, 
validation, and 1st test data only move apart a little. This means for larger 𝑤𝑤w that the ability to predict 
on new vehicles in the fleet is smaller than for vehicles whose data was used during training. By 
adjusting 𝑤𝑤s in the next experiment the overfitting on the 2nd test data set shall be addressed. Overall, 
larger 𝑤𝑤w show an increased performance on their training, validation, and 1st test data than smaller 𝑤𝑤w. 

 
Figure 8: Model performance with different window widths 𝑤𝑤w and histogram-based features. 

In our previous work with laboratory battery cell data [23], combining different 𝑤𝑤w improved model 
and generalization performance compared to the models with the corresponding single 𝑤𝑤w. The same 
comparison is made in Table 11 for vehicle battery system data: We observe a reduction of SD over all 
data sets, but also a decrease of 𝑅𝑅2. For example, for 𝑤𝑤w = {25, 50, 100} SD decreases by 29.3%, but 
also 𝜇𝜇𝑅𝑅𝑆𝑆2 decreases by 7.2 %. We assume that due to the higher variability in the data from real-world 
vehicle operation compared to laboratory operation models with single 𝑤𝑤w are already less prone to 
overfitting. So there is no need to add further variability by combining 𝑤𝑤w as it was for data from 
laboratory operation as in our previous work [23]. As model performance did not improve for 
combining 𝑤𝑤w, we do not consider combined 𝑤𝑤w further, but try to improve generalization performance 
by adapting 𝑤𝑤s in experiment 2. 
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Table 11: Model performance with combined window width 𝑤𝑤w and histogram-based features 

Window width 𝑤𝑤w {10, 25} {25, 50} {50, 100} {10, 25, 50} {25, 50, 100} 
𝜎𝜎𝑅𝑅2 0.132 0.2269 0.3483 0.2361 0.2218 
𝜇𝜇𝑅𝑅2 0.4267 0.5721 0.6061 0.536 0.607 

      
Window width 𝑤𝑤w 25 50 100 50 100 

𝜎𝜎𝑅𝑅2 0.1406 0.2468 0.3139 0.2468 0.3139 
𝜇𝜇𝑅𝑅2 0.4807 0.5986 0.6547 0.5986 0.6547 

 

Experiment 2: Window Shift 𝒘𝒘𝐬𝐬 

For the better performing 𝑤𝑤w ∈ {10, 25, 50, 100} from experiment 1, 𝑤𝑤s was varied with the results 
displayed in Figure 9. The dotted red line again visualizes the limit for SD defined in the first evaluation 
criterion. In this experiment for constant 𝑤𝑤w, varying 𝑤𝑤s are compared in each subplot of Figure 9 so 
the output value distribution does not change. Thus, the RMSE is used as performance metric. 
Comparing results from different 𝑤𝑤w, i.e., different subplots of Figure 9 is only possible with limitations 
considering the different forecast horizons. 

For all 𝑤𝑤w in Figure 9 there exists an optimal 𝑤𝑤s minimizing the SD of the RMSE on the training, 
validation, and both test data sets (1st evaluation criterion). These optimal combinations of 𝑤𝑤w and 𝑤𝑤s 
are chosen for the following experiments: (𝑤𝑤w,𝑤𝑤s) ∈ {(10, 5), (25, 10), (50, 25), (100, 25)}. These 
pairs fulfill the 1st evaluation criterion and are best regarding the 2nd evaluation criterion in their group. 

 

 
Figure 9: Model performance with different window shift 𝑤𝑤s and histogram features 

In the DOE in Section 5.1.1, we stated that 𝑤𝑤s impacts the amount of training samples and the difference 
between training samples due to overlapping time ranges of two neighboring windows. To analyze the 
second aspect in more detail, we introduce the feature disparity: The feature disparity is the mean 
difference of each histogram feature value between neighboring windows of the same vehicle in the 
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data set. I.e., the mean is calculated over all histogram features, all pairs of neighboring windows, and 
all vehicles. The feature disparity is zero for the same window, i.e., the same histogram feature values 
(𝑤𝑤s = 0), close to zero for highly similar windows, and increasing the more dissimilar the histogram 
feature values are. As visualized in Figure 10, for increasing 𝑤𝑤s  the feature disparity increases 
independently of 𝑤𝑤𝑤𝑤 because time windows overlap less. 

 

Figure 10: Histogram feature disparity over window shift 𝑤𝑤s for several window width 𝑤𝑤w 

To analyze the potential dependence of the feature disparity on the model performance and 
generalization, Figure 11 depicts the model performance over the histogram feature disparity for all 
window shifts 𝑤𝑤s and window widths 𝑤𝑤w run in experiment 2. At low feature disparities between 0.0 
and 0.1 there is a high variance of 𝑅𝑅2  reaching a minimum around a feature disparity of 0.2 and 
increasing for higher values. The mean of 𝑅𝑅2 increases from a feature disparity of 0.0 until reaching a 
plateau at around 0.1. Thus, we conclude that a feature disparity of around 0.2 offers a good trade off 
in-between model performance and generalization on training, validation, and both test data sets. 
Especially the performance on the 2nd test data set also reaches its maximum at a feature disparity of 
around 0.2. This also means that 𝑤𝑤s is an effective means to control overfitting of the models. This 
holds especially true for the 2nd test data set which was sometimes not well-fit in experiment 1. With a 
feature disparity of around 0.2 as reference point for new data sets computationally expensive training 
and optimization of multiple models may be reduced. Nevertheless, this hypotheses needs to be further 
evaluated in future experiments. 
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Figure 11: Model performance over histogram feature disparity for all window shift 𝑤𝑤s and window width 𝑤𝑤w run in 
experiment 2. 

Experiment 3: Signal Interval Width 

As shown in Figure 12, a finer signal interval width increases the SD for most models because only the 
RMSE on the training data improves. This is indicating an increasing overfitting. With a finer signal 
interval width the number of features increases from 369 for coarse, to 958 for medium and 3760 for 
fine but the number of samples is constant. This is problematic because it raises the curse of 
dimensionality: An exponentially increasing number of training samples is required to cover an 
increasing number of features and their combinations [145]. Furthermore, the ML models have +10 % 
parameters for medium and +249 % for fine compared to coarse signal interval width which is not 
dampened by regularization so the models overfit. We opt to continue with the coarse signal interval 
width in the next experiments because only the coarse signal interval width satisfies the first evaluation 
criterion for all 𝑤𝑤w. 
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Figure 12: Model performance with different signal interval widths and histogram features 

Experiment 4: Histogram Dimension 

Similar to experiment 3, when increasing the histogram dimensions in this experiment, the number of 
features increases from 67 for 1D up to 369 for 2D and 1153 for 3D histograms. In Figure 13 the 
corresponding results are visualized. For 𝑤𝑤w  as 10, 25, and 50 cycles the 1st evaluation criterion 
regarding SD is fulfilled independently of the histogram dimension. However, for 𝑤𝑤w = 100 cycles the 
1st evaluation criterion is only fulfilled for 2D histograms and for 𝑤𝑤w = 50 cycles SD is still lower for 
2D histograms than for 1D and 3D histograms. For 𝑤𝑤w ∈ {10, 25, 50} cycles, the mean RMSE on 
training, validation, and both test data sets improves by 0.016 % SOH when switching from 1D to 2D 
and decreases by 0.0036 % SOH when switching from 2D to 3D. So the differences for these 𝑤𝑤w caused 
by the histogram dimension are minor. This is not the case for 𝑤𝑤w = 100 cycles where the model 
overfits on the training data for 1D and 3D, similar to the medium and fine signal interval width in 
experiment 3. 

In general, the 2D histograms seem to provide a good balance between a sufficient representation of 
battery aging causes and low number of features. Besides, editing 2D histograms for virtual predictions, 
i.e., what-if scenarios, is easier and more conceivable as 3D histograms which are difficult to represent 
visually. 
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Figure 13: Model performance with different histogram dimensions 

Experiment 5: Separation of BEV Modes 

The separation of histograms by the BEV mode barley influences the model performance for 𝑤𝑤w ∈
{10, 25, 50} cycles as the results in Figure 14 show. As in the previous experiments, for 𝑤𝑤w = 100 
cycles the performance is more variable: When separating charging into AC- and DC-charging (B) 
compared to no separation at all (A) the SD increases by 219 % and the mean RMSE decreases by 
1.4 %. The small mean RMSE improvement may be explained by only little information added by 
separating the charging modes. Already the current alone offers enough potential for differentiation of 
AC- and DC-charging in the histograms. In particular for the final phase at the end of DC-charging, 
especially the CV phase, when the current is controlled and as low as for AC-charging separate 
histograms for AC- and DC-charging (B) offer additional information.  

Without BEV mode differentiation (C) the SD increases by 95 % and the mean RMSE increases by 1 % 
compared to A. Thus, we conclude that separate histograms by the BEV modes charging, driving, 
parking (A) are preferable and select this variant for the final models. Furthermore, this allows explicit 
distinction of different BEV modes during the model application. 
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Figure 14: Model performance considering BEV-modes separately 

The final models selected after experiment 5 and their hyperparameters are summarized in Table 14. 

Exemplarily, for the model trained on 𝑤𝑤w = 25 and 𝑤𝑤s = 10 Figure 15 shows the ∆𝑆𝑆𝑆𝑆𝑆𝑆predicted over 
the ∆𝑆𝑆𝑆𝑆𝑆𝑆measured. The RMSE of all four data sets, training, validation, 1. Test, and 2. Test, is very 
similar (SD of only 0.043, see Table 16). A qualitative comparison of these plots with the same method 
applied on battery cell data from laboratory operation as in [23] shows that SOH forecasting with the 
given real-world battery system data performs worse. We expect these results to become better with 
finer time series data sampling and more precise SOH labels. 
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Figure 15: Model performance after last experiment, model H2 (𝑤𝑤w = 25 and 𝑤𝑤s = 10), ∆𝑆𝑆𝑆𝑆𝑆𝑆predicted over the 

∆𝑆𝑆𝑆𝑆𝑆𝑆measured. The corresponding RMSE values are: 1.209, 1.287, 1.189, and 1.285 respectively (Training, Val, 1. Test, 2. 
Test). 

The same predictions as in Figure 15 are displayed as moving boxplot compared to the mean measured 
SOH in Figure 16. Also, the 50 % and 90 % confidence zone for the prediction error are visualized 
which represent the upper and lower boundaries of the 50 % and 90 % best predictions respectively 
compared to the mean SOH curve. Until around 300 EFC the 50 % confidence zone has a width of 
around 1 % SOH. This means half of the predictions deviate less than 0.5 % SOH from the measured 
SOH. The 90 % confidence zone is significantly wider with around 3.5 % SOH. After around 300 EFC 
there are too few data samples available which explains the arbitrary mean SOH curve, i.e., predictions 
after that point in time should not be considered as valid. 

 
Figure 16: SOH forecasting error of the whole fleet with model H2 (𝑤𝑤w = 25 and 𝑤𝑤s = 10). The characteristics of the mean 

measure SOH have been discussed at Figure 4 already. 
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5.2.2 Accessible Features 
For an initial assessment of the accessible features, Figure 17 depicts a boxplot diagram of the variance 
of the accessible features after min-max-normalization. The feature ∆𝑘𝑘 = 𝑤𝑤w is always the same for 
single, i.e., non-grouped 𝑤𝑤w, because the sliding window procedure is oriented at EFCs and not, e.g., 
at the total operational time, e.g., with 𝑤𝑤w = 30 𝛥𝛥. The features 𝐼𝐼ch,max and 𝑆𝑆𝑆𝑆𝐸𝐸max have a very low 
variance because their maximum value is always reached at some point during battery operation, either 
at DC charging or after a complete charging session to 𝑆𝑆𝑆𝑆𝐸𝐸 = 100 % respectively. We expect these 
features to offer only little potential for differentiation of the samples during model training. 

 

Figure 17: Variance of the accessible input features after min-max-normalization for 𝑤𝑤w = 25 and 𝑤𝑤s = 10. 

Experiment 1: Window Shift 𝒘𝒘𝐬𝐬 

Figure 18 depicts the model performance only with 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) as accessible feature for combinations of 
𝑤𝑤w and 𝑤𝑤s. The model performance is quite similar for different 𝑤𝑤s. Based on the evaluation criteria 
we choose for the following experiments: (𝑤𝑤w,𝑤𝑤s) ∈ {(10, 5), (25, 10), (50, 10), (100, 10)}. 
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Figure 18: Model performance with different window shift 𝑤𝑤s and only 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) as accessible feature 

Experiment 2a: Cyclic Aging 

The results of experiment 2a and 2b are compared to the base line of experiment 1 only with 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) 
as accessible feature. Figure 19 shows that the model performance with additional accessible features 
improves slightly. As for the histogram-based features SD increases for higher 𝑤𝑤w, like 𝑤𝑤w = 100 
cycles. Feature sets 2a.4 and 2a.5 are performing best concerning the evaluation criteria (𝐸𝐸thrpt,AC & 
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𝐸𝐸thrpt,DC and 𝐼𝐼ch,dr respectively). Furthermore, they show a minor improvement of the mean RMSE 
compared to the baseline feature set 1 by 2.5 % and 1.6 % respectively.  

 
Figure 19: Model performance with accessible feature describing cyclic aging 

Experiment 2b: Calendar Aging 

As depicted in Figure 20, only the models trained on feature set 2b.4 fulfill the first evaluation criterion 
for all 𝑤𝑤w. Also, for feature set 2b.4 (∆𝑡𝑡total) over all 𝑤𝑤w the mean RMSE compared to the baseline 
feature set 1 decreases the most by 2.2 %. For feature sets 2b.1, 2b.2, and 2b.3, the decrease is only 
1.5 %, 0.5 %, and 0.8 % respectively.  
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Figure 20: Model performance with accessible feature describing calendar aging 

Experiment 3: Cyclic & Calendar Aging 

As depicted in Figure 21, when using all features from experiment 2a and 2b as feature set 3.1, the 
threshold of the first evaluation criterion exceeds for 𝑤𝑤w = 50 cycles. Using only the selected features 
(𝐸𝐸thrpt,AC, 𝐸𝐸thrpt,DC, 𝐼𝐼ch,dr, ∆𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡) from experiment 2a and 2b, together with the 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) in feature 
set 3.2 results in lower SD and improves the mean RMSE over the baseline feature set 1 over all window 
widths by 3.8 %.  
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Figure 21: Model performance with accessible feature describing cyclic and calendar aging 

Comparison of Histogram-based and accessible Features 

Feature set 3.2 has only ten input features, which is significantly less than the 369 features of the 
histogram-based approach. Despite, the number of model parameters is roughly in the same dimension 
of 105, i.e., the model complexity is not always reduced. On average the mean RMSE is 2 % better for 
the histogram-based features compared to the accessible features over all 𝑤𝑤w as listed in Table 16 in 
the Appendix. For a high 𝑤𝑤w of 100 EFCs, the performance is similar because the operational load 
encoded in the histograms is smoothed strongly given the large aggregated time window. I.e., the 
operational load in the windows becomes similar. For smaller 𝑤𝑤w of 10 and 25 EFCs, the histogram-
based features are better than the accessible features (6.1 % and 5.0 % respectively). Thus, we conclude 
that histogram-based features are preferable as they offer more detailed encoding and aggregation of 
battery operational load. 

5.3 Use cases 
To exemplarily demonstrate how the SOH forecasting model could be applied, e.g., by fleet managers 
as mentioned in the introduction, we create two practical and easy to understand use cases that are 
applied to the model with histogram-based features (H2). For each use case the battery operational test 
data of the fleet is modified according to a scenario as introduced in Section 2.3. Therefore, the input 
data was fed to the model iteratively: The 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1)  of the next time window was calculated as 
𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1) + ∆𝑆𝑆𝑆𝑆𝑆𝑆 of the previous time window with ∆𝑆𝑆𝑆𝑆𝑆𝑆 as the model output. A drawback of this 
procedure is that the prediction error accumulates and the prediction performance decreases by time. 
However, it allows to show the long term effect of the modified scenario data. All results in this section 
need to be interpreted carefully because the interfered results shown in the plots are only expressing 
what the ML model has learnt, not necessarily how the aging really would have been. It is important to 
ensure that the ML model does not extrapolate. 

Charging Management: Limitation of 𝑺𝑺𝑺𝑺𝑺𝑺𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩,𝐦𝐦𝐩𝐩𝐦𝐦 

We assume that an intelligent charging management was employed to limit the maximum SOE at the 
end of a charging session. This reduced SOE during the following parking may lead to decelerated 
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calendar aging. The mean SOE during parking for the baseline is at 90 % so that a limitation of 
𝑆𝑆𝑆𝑆𝐸𝐸park,max to 90 % would only change the time series data a little. Furthermore, for the coarse signal 
interval width of 20 % these values would all remain in the same bin. Thus, it is not shown in Figure 
22. Compared to the unmodified baseline, a 𝑆𝑆𝑆𝑆𝐸𝐸park,max limit of 80 % does not change the fleet’s aging 
much. However, for a 𝑆𝑆𝑆𝑆𝐸𝐸park,max  limit of 60 % the aging is significantly reduced. E.g., around 
150 EFC the SOH is 0.8 % SOH smaller compared to the baseline. From there until 300 EFC the 
difference reduces, potentially because parking becomes less dominant after the breaks caused by 
COVID-19. The influence of limiting 𝑆𝑆𝑆𝑆𝐸𝐸park,max learnt by the model and observed in this scenario 
corresponds to the results of Keil et al. [146] who find in laboratory cell experiments that calendar aging 
shows plateaus with SOE intervals of 20 % to 30 % with similar degradation, i.e., a non-linear 
dependency of SOE and calendar aging. 

 

Figure 22: Fleet SOH forecasting with scenario of limited 𝑆𝑆𝑆𝑆𝐸𝐸park,max and model H2. 

Charging Management: Only AC-charging 

In laboratory cell experiments it was observed that high C-rates accelerate battery aging [45,46]. In 
vehicle operation, high C-rates may occur during DC-charging, especially during high power charging 
(HPC). Figure 23 shows the fleet aging trajectory of the unmodified baseline scenario with a mixture 
of AC- and DC-charging. When assuming AC-charging by limiting the C-rate, the SOH increases by 
about 0.1 % SOH which we consider negligibly small. However, the DC-charging C-rate was only 
around 1.25C during DC-charging, so relatively low compared to battery cell experiments with up to 
8C [84,85]. Also, it has to be noted that for switching from AC- to DC-charging the duration of the 
charging session, temperature, and SOE would change. This was not done in this scenario so that only 
the influence of changed current distribution is considered, i.e., ceteris paribus. Further influences, e.g., 
of charging at lower and high temperatures were not considered in this use case. 
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Figure 23: Fleet SOH forecasting with scenario of only AC-charging and model H2 

6 Conclusion 
Our previous work [17,23] has shown that SOH forecasting works with laboratory battery cell data. In 
this work, this existing SOH forecasting method based on histogram features was successfully applied 
to battery system data from the real-world BEV fleet operation of a ride-pooling MOD provider. The 
model was able to learn the dependence of the SOH from the battery load, i.e., BEV usage. Compared 
to the laboratory battery cell data the generalization of models trained on vehicle system data did not 
improve when learning multiple forecast horizons (𝑤𝑤w ). In addition, overfitting on newly joined 
vehicles was controllable by the number of samples generated (𝑤𝑤s). Two use cases for different charging 
strategies illustrate how the SOH forecasting model may be applied. Switching from accessible features 
to the histogram-based features showed an improvement in model performance of up to 6.1 %. 

The model is mainly limited by the data used for training in several ways: First, the measurement 
accuracy and sampling rate of the battery signals can limit the performance of the model, especially of 
the SOH signal and temperature signal during parking. Second, the method assumes path independence 
of battery aging, i.e., the order of operational states encoded in the histograms does not matter [147,148]. 
Third, the current state representation is assumed to be accurately represented only by 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1), i.e., no 
other features such as 𝐸𝐸thrpt(𝑡𝑡1) are used. Likewise it is assumed that the load applied to the battery 
before 𝑡𝑡1  is either already reflected by 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡1)  or does not affect the SOH trajectory after 𝑡𝑡1 . 
Furthermore, no mechanical or vibrational stress is considered which also affects battery aging 
[149,150]. Third, since the model is purely data-driven it may only provide good interpolations within 
the range of the training data. 

In future work it seems beneficial to build a hybrid model that combines empirical knowledge from 
laboratory experiments with features that can encode the variability of real-world vehicle operation. 
Alternatively, a model pre-trained on laboratory battery cell data of the same cell type build in the 
BEV’s battery system may provide a good starting point for transfer learning to the battery system 
operated in real-world conditions. Transfer learning utilizes knowledge previously acquired in one 
domain to solve a task in a novel domain [151]. Battery domains could be specified by their operational 
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load, the operational region, the battery type used, and the configuration of the battery system or as a 
single cell [24].  

Going beyond the assumption that a single value is capable of characterizing the state of a battery with 
respect to its aging, the SOH could be extended from a single value like the capacity, storable energy, 
or resistance to a vector of multiple values which could also consider capacity recovery effects more 
accurately. With a single-value based SOH, in the case of capacity recovery a battery in two different 
situations and contexts could have the same SOH which is not desired. 

Assuming system-level and cell-level data of BEV battery systems, the interdependencies of current, 
temperature, and SOE on battery aging when switching from cell to pack as discussed in Section 2.1.2 
may be considered in more detail. For example, by considering the temperature not only at the system-
level, but also at the cell-level or module-level as well may enable a SOH forecasting model to consider 
a SOH distribution in the battery system. Interdependencies within systems like industrial cool boxes 
[152] and gearbox systems [153] have been modeled by a dependency matrix to express the interaction 
of the components in a multicomponent system [154]. This has not yet been done for batteries, but it 
seems possible given the construction plan of a battery system. 
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Appendix 
Battery Pack Data in Literature Review 
Table 12: Overview of data sets of papers apparent in our literature review [12]. Only data sets of batteries on pack level are 

listed. All other data sets are on battery-cell level. Specification of the operational context following Table 4. 

Source Vehicle 
type 

Amount of 
batteries 

Operational context Battery type 

[100] EV 2 Car-sharing service Lithium-ion 
[155] PHEV 7,247 Private owners Lithium-ion (NMC) 
[95] EV 1 Driver following predefined profile 

(I-VC.3) and parts of test bench 
Lithium-ion (LFP) 

[90] Pack 
composed 
of 85 cells 

1 Representative driving profile (I-
VC.2) 

Lithium-ion (NMC) 

[156] Pack 
composed 
of 6 cells 
in series 

1,027 Connected to photovoltaic (PV) 
system 

Lead-acid 

[157] Heavy-
duty 
trucks 

33,603 LV starter battery Lead-acid 
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Definitions of Battery Pack and Battery System 
Table 13: Overview of different definitions of the terms battery module, battery pack, and battery system. “x” means 

required. “-“ means not required. “Opt.” means optional component. 

 Definition of  Components 

So
ur
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od
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ck
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st

em
 

 

C
el

ls 

M
od
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es

 

Pa
ck

s 

H
ou

si
ng

 

C
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lin
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sy
st

em
 

B
M

S 

Pe
rip

he
ra

ls 

[56] x    x - - x x Slave x 
[56]  x   - x x - x - x 
[56]   x  - - x - x Master x 
[55] x    x - - - - Opt. - 
[55]  x   x x - Opt. Opt. Opt. Opt. 
[58] x    x - - x - x19F

20 x20 
[58]  x   - x - x Opt. x wiring 
[59] x    x - - - - - - 

[59]  x   x - - x 

As 
function 

of 
housing 

x - 

[59]   x    x - - - DC/DC 
converter 

[61] x    x - - - - - - 
[61]  x   - x20F

21 - - - - - 

[60]   x  - x - x -21F

22 x Sensor and 
controllers 

[158]   x  - x - - - - - 
 

Derivation of SOH Signal Discretization Error 
Based on the relative discretization error 𝜀𝜀E of the measured energy signal 𝐸𝐸measured from the true 
energy signal 𝐸𝐸true: 

𝐸𝐸measured = 𝐸𝐸true ∙ (1 + 𝜀𝜀E) ⇔ 𝜀𝜀E =
𝐸𝐸measured − 𝐸𝐸true

𝐸𝐸true
 (10) 

we estimate the maximum relative discretization error 𝜀𝜀E of the energy signal: 

max(𝜀𝜀E) =
max(𝐸𝐸measured − 𝐸𝐸true)

min(𝐸𝐸true) =
0.5 ∙ 𝑅𝑅E

min (𝑆𝑆𝑆𝑆𝐸𝐸) ∙ 𝐸𝐸max
=

0.5 ∙ 𝑅𝑅E
0.8 ∙ 0.8 ∙ Enom

=
0.5 ∙ 50 𝑊𝑊ℎ

0.8 ∙ 0.8 ∙ 87 𝑘𝑘𝑊𝑊ℎ
= 0.000449 

(11) 

assuming that the battery SOH is always determined at 𝑆𝑆𝑆𝑆𝐸𝐸 ≥ 80 % and 𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 80 % because of the 
EOL with 𝑅𝑅E as resolution of the energy signal. 

Analogous to Eq. (11), we estimate the maximum relative discretization error 𝜀𝜀SOE of the SOE signal: 

 
20 „dedicated electronics for voltage, current and temperature control“ [58] 
21 Self-reference of the terms pack and system: “[…] the term ‘battery pack’ or ‘pack’ is employed to describe a 
unit of multiple modules connected to form a HV battery system […].” [61] 
22 Only thermal management is listed which is seen as a function of the BMS in other literature. 
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max(𝜀𝜀SOE) =
max(𝑆𝑆𝑆𝑆𝐸𝐸measured − 𝑆𝑆𝑆𝑆𝐸𝐸true)

min(𝑆𝑆𝑆𝑆𝐸𝐸true) =
0.5 ∙ 𝑅𝑅SOE

80 %
=

0.5 ∙ 0.5 %
80 %

= 0.3125 (12) 

with 𝑆𝑆𝑆𝑆𝐸𝐸measured and 𝑆𝑆𝑆𝑆𝐸𝐸true as measured and true SOE respectively and 𝑅𝑅SOE as resolution of the 
SOE signal.  

Analogous to Eq. (10), we define for the SOH: 

𝑆𝑆𝑆𝑆𝑆𝑆measured = 𝑆𝑆𝑆𝑆𝑆𝑆true ∙ (1 + 𝜀𝜀SOH). (13) 
From Eq. (7) follows for 𝑆𝑆𝑆𝑆𝑆𝑆measured: 

𝑆𝑆𝑆𝑆𝑆𝑆measured =
𝐸𝐸measured

𝑆𝑆𝑆𝑆𝐸𝐸measured ∙ 𝐸𝐸nom
 (14) 

with 𝐸𝐸nom = 𝑐𝑐𝑣𝑣𝑛𝑛𝑠𝑠𝑡𝑡. Using Eq. (10) for 𝐸𝐸measured and 𝑆𝑆𝑆𝑆𝐸𝐸measured we obtain: 

𝑆𝑆𝑆𝑆𝑆𝑆measured = 𝑅𝑅true∙(1+𝜀𝜀E)
𝑅𝑅𝑆𝑆𝑅𝑅true∙(1+𝜀𝜀SOC)∙𝑅𝑅nom

= 𝑅𝑅true
𝑅𝑅𝑆𝑆𝑅𝑅true∙𝑅𝑅nom

∙ 1+𝜀𝜀𝐸𝐸
1+𝜀𝜀𝑆𝑆𝑆𝑆𝐸𝐸

= 𝑆𝑆𝑆𝑆𝑆𝑆true ∙
1+𝜀𝜀E
1+𝜀𝜀SOE

. (15) 
With Eq. (13) and (15) we define: 

1 + 𝜀𝜀SOH ≔
1+𝜀𝜀E
1+𝜀𝜀SOE

. (16) 
and reformulate it as: 

𝜀𝜀SOH = 1+𝜀𝜀E
1+𝜀𝜀SOE

− 1 = 𝜀𝜀E−𝜀𝜀SOE
1+𝜀𝜀SOE

. (17) 
The maximum possible of 𝜀𝜀SOH in Eq. (17) is reached for maximum positive 𝜀𝜀E and maximum negative 
𝜀𝜀SOE: 

𝜀𝜀SOH = 𝜀𝜀E−𝜀𝜀SOE
1+𝜀𝜀SOE

= 0.000449−(−0.3125)
1+(−0.3125) = 0.0036 = 0.36 %. (18) 
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Characteristics of best Models with Histogram-based Features 
Table 14: Characteristics of best models with histogram-based features 

Model No. H1 H2 H3 H4 
DOE parameters     
Window Width 10 25 50 100 
Window Shift 5 10 25 25 
Interval Resolution coarse coarse coarse coarse 
Histogram Dimensions 2D 2D 2D 2D 
Input Features A A A A 
Data Characteristics     
No. of Features 369 369 369 369 
No. of Samples 16,439 7,832 3,081 2,052 
Hyperparameters     
Batch Size 128 128 128 32 
Learning Rate 0.00025 0.00028 0.0002 0.0078 
Regularization parameter 
(λ1, λ2) 

(0, 0) 0 (0.0003, 0) (0, 0.0014) 

Dropout Rate 0.25 0.25 0 0 
MLP Layout [260, 360, 460, 

460, 340, 140, 
220] 

[180, 380] [380, 440, 260, 
480, 80, 200, 260, 
440, 60, 340, 100, 
360, 80, 60, 360] 

[80, 440, 240, 
380, 340, 160, 
220] 

Model Complexity     
No. of Hidden Layers 7 2 15 7 
No. of Model Parameter 804,001 135,761 943,681 482,401 
Training time in s 1,096 171 1173 93 
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Characteristics of best Models with Accessible Features 
Table 15: Characteristics of best models with accessible features 

Model No. SF1 SF2 SF3 SF4 
DOE parameters     
Window Width 10 25 50 100 
Window Shift 5 10 10 10 
Input Features 3.1 3.1 3.1 3.1 
Data Characteristics     
No. of Features 10 10 10 10 
No. of Samples 16,439 7,832 3,081 2,052 
Hyperparameters     
Batch Size 128 128 64 64 
Learning Rate 0.00083 0.00023 0.00024 0.00057 
Regularization parameter 
(λ1, λ2) 

(0, 0) (0.0002, 0) (0, 0.0002) (0.0001, 0) 

Dropout Rate 0.24 0 0 0 
MLP Layout [260, 100, 60] [260, 280, 420, 

460, 380, 200, 
280] 

[420, 400, 480, 
340, 200, 280, 
160] 

[400, 280, 460, 
340, 380, 80] 

Model Complexity     
No. of Hidden Layers 3 7 7 6 
No. of Model Parameter 35,341 695,821 699,061 563,221 
Training time in s 140 908 546 232 

 

Comparison of Model Performance for Histogram-based and accessible Feature  
Table 16: Comparison of model performance for histogram-based and accessible features 

Window Width 10 EFC  25 EFC  50 EFC  100 EFC 
Model No. H1 SF1  H2 SF2  H3 SF3  H4 SF4 
Metrics            

𝑅𝑅2
 

Train 0.378 0.233  0.470 0.352  0.426 0.453  0.432 0.378 
Validation 0.291 0.169  0.385 0.335  0.357 0.436  0.481 0.392 
1. Test 0.266 0.188  0.384 0.307  0.343 0.365  0.289 0.431 
2. Test 0.212 0.182  0.313 0.304  0.264 0.202  0.382 0.308 
𝜇𝜇𝑅𝑅2 0.287 0.193  0.388 0.325  0.347 0.364  0.396 0.377 
𝜎𝜎𝑅𝑅2  0.059 0.024  0.055 0.019  0.057 0.099  0.070 0.044 

R
M

SE
 

Train 0.923 1.025  1.209 1.336  1.461 1.402  1.585 1.607 
Validation 1.011 1.094  1.287 1.338  1.460 1.444  1.531 1.605 
1. Test 1.055 1.109  1.189 1.261  1.582 1.491  1.550 1.482 
2. Test 1.044 1.064  1.285 1.293  1.485 1.496  1.466 1.459 
𝜇𝜇RMSE 1.008 1.073  1.242 1.307  1.497 1.458  1.533 1.538 
𝜎𝜎RMSE 0.051 0.032  0.043 0.032  0.050 0.038  0.043 0.068 
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